1
0
Fork 0

added initial source files

This commit is contained in:
spi-ca 2016-03-07 04:31:13 +09:00
parent 41e012a208
commit 12840340f7
1982 changed files with 284525 additions and 2 deletions

35
.gitignore vendored
View File

@ -1,7 +1,34 @@
# Created by https://www.gitignore.io/api/ntellij,go,linux,osx,windows # Created by https://www.gitignore.io/api/intellij,go,linux,osx,windows
### Intellij ###
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and Webstorm
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
.idea
*.iml
## File-based project format:
*.ipr
*.iws
## Plugin-specific files:
# IntelliJ
/out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
#!! ERROR: ntellij is undefined. Use list command to see defined gitignore types !!#
### Go ### ### Go ###
# Compiled Object files, Static and Dynamic libs (Shared Objects) # Compiled Object files, Static and Dynamic libs (Shared Objects)
@ -32,6 +59,7 @@ _testmain.go
### Linux ### ### Linux ###
*~ *~
*.swp
# temporary files which can be created if a process still has a handle open of a deleted file # temporary files which can be created if a process still has a handle open of a deleted file
.fuse_hidden* .fuse_hidden*
@ -91,3 +119,6 @@ $RECYCLE.BIN/
# Windows shortcuts # Windows shortcuts
*.lnk *.lnk
build/
bind/
wiki

51
Godeps/Godeps.json generated Normal file
View File

@ -0,0 +1,51 @@
{
"ImportPath": "amuz.es/go/wiki",
"GoVersion": "go1.5",
"Deps": [
{
"ImportPath": "github.com/elazarl/go-bindata-assetfs",
"Rev": "57eb5e1fc594ad4b0b1dbea7b286d299e0cb43c2"
},
{
"ImportPath": "github.com/flosch/pongo2",
"Comment": "v1.0-rc1-182-ga269242",
"Rev": "a269242022ae534b052672d6a9326a40560a63e7"
},
{
"ImportPath": "github.com/gin-gonic/gin",
"Comment": "v1.0rc1-219-g3d002e3",
"Rev": "3d002e382355cafc15d706b92899b1961d5b79e9"
},
{
"ImportPath": "github.com/gin-gonic/gin/binding",
"Comment": "v1.0rc1-219-g3d002e3",
"Rev": "3d002e382355cafc15d706b92899b1961d5b79e9"
},
{
"ImportPath": "github.com/gin-gonic/gin/render",
"Comment": "v1.0rc1-219-g3d002e3",
"Rev": "3d002e382355cafc15d706b92899b1961d5b79e9"
},
{
"ImportPath": "github.com/golang/glog",
"Rev": "23def4e6c14b4da8ac2ed8007337bc5eb5007998"
},
{
"ImportPath": "github.com/golang/protobuf/proto",
"Rev": "c75fbf01dc6cb73649c4cd4326182c3e44aa9dbb"
},
{
"ImportPath": "github.com/manucorporat/sse",
"Rev": "ee05b128a739a0fb76c7ebd3ae4810c1de808d6d"
},
{
"ImportPath": "golang.org/x/net/context",
"Rev": "08f168e593b5aab61849054b77981de812666697"
},
{
"ImportPath": "gopkg.in/go-playground/validator.v8",
"Comment": "v8.17.1",
"Rev": "014792cf3e266caff1e916876be12282b33059e0"
}
]
}

5
Godeps/Readme generated Normal file
View File

@ -0,0 +1,5 @@
This directory tree is generated automatically by godep.
Please do not edit.
See https://github.com/tools/godep for more information.

2
Godeps/_workspace/.gitignore generated vendored Normal file
View File

@ -0,0 +1,2 @@
/pkg
/bin

View File

@ -0,0 +1,13 @@
include $(GOROOT)/src/Make.inc
TARG=bitbucket.org/ww/goautoneg
GOFILES=autoneg.go
include $(GOROOT)/src/Make.pkg
format:
gofmt -w *.go
docs:
gomake clean
godoc ${TARG} > README.txt

View File

@ -0,0 +1,67 @@
PACKAGE
package goautoneg
import "bitbucket.org/ww/goautoneg"
HTTP Content-Type Autonegotiation.
The functions in this package implement the behaviour specified in
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
Copyright (c) 2011, Open Knowledge Foundation Ltd.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
Neither the name of the Open Knowledge Foundation Ltd. nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
FUNCTIONS
func Negotiate(header string, alternatives []string) (content_type string)
Negotiate the most appropriate content_type given the accept header
and a list of alternatives.
func ParseAccept(header string) (accept []Accept)
Parse an Accept Header string returning a sorted list
of clauses
TYPES
type Accept struct {
Type, SubType string
Q float32
Params map[string]string
}
Structure to represent a clause in an HTTP Accept Header
SUBDIRECTORIES
.hg

View File

@ -0,0 +1,162 @@
/*
HTTP Content-Type Autonegotiation.
The functions in this package implement the behaviour specified in
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
Copyright (c) 2011, Open Knowledge Foundation Ltd.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
Neither the name of the Open Knowledge Foundation Ltd. nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package goautoneg
import (
"sort"
"strconv"
"strings"
)
// Structure to represent a clause in an HTTP Accept Header
type Accept struct {
Type, SubType string
Q float64
Params map[string]string
}
// For internal use, so that we can use the sort interface
type accept_slice []Accept
func (accept accept_slice) Len() int {
slice := []Accept(accept)
return len(slice)
}
func (accept accept_slice) Less(i, j int) bool {
slice := []Accept(accept)
ai, aj := slice[i], slice[j]
if ai.Q > aj.Q {
return true
}
if ai.Type != "*" && aj.Type == "*" {
return true
}
if ai.SubType != "*" && aj.SubType == "*" {
return true
}
return false
}
func (accept accept_slice) Swap(i, j int) {
slice := []Accept(accept)
slice[i], slice[j] = slice[j], slice[i]
}
// Parse an Accept Header string returning a sorted list
// of clauses
func ParseAccept(header string) (accept []Accept) {
parts := strings.Split(header, ",")
accept = make([]Accept, 0, len(parts))
for _, part := range parts {
part := strings.Trim(part, " ")
a := Accept{}
a.Params = make(map[string]string)
a.Q = 1.0
mrp := strings.Split(part, ";")
media_range := mrp[0]
sp := strings.Split(media_range, "/")
a.Type = strings.Trim(sp[0], " ")
switch {
case len(sp) == 1 && a.Type == "*":
a.SubType = "*"
case len(sp) == 2:
a.SubType = strings.Trim(sp[1], " ")
default:
continue
}
if len(mrp) == 1 {
accept = append(accept, a)
continue
}
for _, param := range mrp[1:] {
sp := strings.SplitN(param, "=", 2)
if len(sp) != 2 {
continue
}
token := strings.Trim(sp[0], " ")
if token == "q" {
a.Q, _ = strconv.ParseFloat(sp[1], 32)
} else {
a.Params[token] = strings.Trim(sp[1], " ")
}
}
accept = append(accept, a)
}
slice := accept_slice(accept)
sort.Sort(slice)
return
}
// Negotiate the most appropriate content_type given the accept header
// and a list of alternatives.
func Negotiate(header string, alternatives []string) (content_type string) {
asp := make([][]string, 0, len(alternatives))
for _, ctype := range alternatives {
asp = append(asp, strings.SplitN(ctype, "/", 2))
}
for _, clause := range ParseAccept(header) {
for i, ctsp := range asp {
if clause.Type == ctsp[0] && clause.SubType == ctsp[1] {
content_type = alternatives[i]
return
}
if clause.Type == ctsp[0] && clause.SubType == "*" {
content_type = alternatives[i]
return
}
if clause.Type == "*" && clause.SubType == "*" {
content_type = alternatives[i]
return
}
}
}
return
}

View File

@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.out

View File

@ -0,0 +1,11 @@
language: go
go:
- 1.2
- 1.4
- tip
before_install:
- go get github.com/axw/gocov/gocov
- go get github.com/mattn/goveralls
- if ! go get code.google.com/p/go.tools/cmd/cover; then go get golang.org/x/tools/cmd/cover; fi
script:
- $HOME/gopath/bin/goveralls -service=travis-ci

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2015 Sean Dolphin
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,66 @@
# BQSchema
**Documentation:** [![GoDoc](https://godoc.org/github.com/SeanDolphin/bqschema?status.png)](http://godoc.org/github.com/SeanDolphin/bqschema)
**Build Status:** [![Build Status](https://travis-ci.org/SeanDolphin/bqschema.svg?branch=master)](https://travis-ci.org/SeanDolphin/bqschema)
**Test Coverage:** [![Coverage Status](https://coveralls.io/repos/SeanDolphin/bqschema/badge.svg)](https://coveralls.io/r/SeanDolphin/bqschema)
BQSchema is a package used to created Google Big Query schema directly from Go structs and import BigQuery QueryResponse into arrays of Go structs.
## Usage
You can use BQSchema to automatically load Google Big Query results into arrays of basic Go structs.
~~~ go
// main.go
package main
import (
"google.golang.org/api/bigquery/v2"
"github.com/SeanDolphin/bqschema"
)
type person struct{
Name string
Email string
Age int
}
func main() {
// authorize the bigquery service
// create a query
result, err := bq.Jobs.Query("projectID", query).Do()
if err == nil {
var people []person
err := bqschema.ToStructs(result, &people)
// do something with people
}
}
~~~
You can also use BQSchema to create the schema fields when creating new Big Query tables from basic Go structs.
~~~ go
// main.go
package main
import (
"google.golang.org/api/bigquery/v2"
"github.com/SeanDolphin/bqschema"
)
type person struct{
Name string
Email string
Age int
}
func main() {
// authorize the bigquery service
table, err := bq.Tables.Insert("projectID","datasetID", bigquery.Table{
Schema:bqschema.MustToSchema(person{})
}).Do()
}
~~~

View File

@ -0,0 +1,151 @@
package bqschema
import (
"errors"
"reflect"
"strings"
"time"
"google.golang.org/api/bigquery/v2"
)
var (
ArrayOfArray = errors.New("Array of Arrays not allowed")
UnknownType = errors.New("Unknown type")
NotStruct = errors.New("Can not convert non structs")
)
func ToSchema(src interface{}) (*bigquery.TableSchema, error) {
value := reflect.ValueOf(src)
t := value.Type()
schema := &bigquery.TableSchema{}
if t.Kind() == reflect.Struct {
schema.Fields = make([]*bigquery.TableFieldSchema, 0, t.NumField())
for i := 0; i < t.NumField(); i++ {
sf := t.Field(i)
if sf.PkgPath != "" { // unexported
continue
}
v := pointerGuard(value.Field(i))
var name string
jsonTag := sf.Tag.Get("json")
switch jsonTag {
case "-":
continue
case "":
name = sf.Name
default:
name = strings.Split(jsonTag, ",")[0]
}
tfs := &bigquery.TableFieldSchema{
Mode: "required",
Name: name,
Type: "",
}
schema.Fields = append(schema.Fields, tfs)
kind := v.Kind()
t, isSimple := simpleType(kind)
if isSimple {
tfs.Type = t
} else {
switch kind {
case reflect.Struct:
tfs.Mode = "nullable"
if t, fields, err := structConversion(v.Interface()); err == nil {
tfs.Type = t
if t == "string" {
tfs.Mode = "required"
}
tfs.Fields = fields
} else {
return schema, err
}
case reflect.Array, reflect.Slice:
tfs.Mode = "repeated"
subKind := pointerGuard(v.Type().Elem()).Kind()
t, isSimple := simpleType(subKind)
if isSimple {
schema.Fields[i].Type = t
} else if subKind == reflect.Struct {
subStruct := reflect.Zero(pointerGuard(v.Type().Elem()).Type()).Interface()
if t, fields, err := structConversion(subStruct); err == nil {
schema.Fields[i].Type = t
schema.Fields[i].Fields = fields
} else {
return schema, err
}
} else {
return schema, ArrayOfArray
}
default:
return schema, UnknownType
}
}
}
} else {
return schema, NotStruct
}
return schema, nil
}
func MustToSchema(src interface{}) *bigquery.TableSchema {
schema, err := ToSchema(src)
if err != nil {
panic(err)
}
return schema
}
func simpleType(kind reflect.Kind) (string, bool) {
isSimple := true
t := ""
switch kind {
case reflect.Bool:
t = "boolean"
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
t = "integer"
case reflect.Float32, reflect.Float64:
t = "float"
case reflect.String:
t = "string"
default:
isSimple = false
}
return t, isSimple
}
func structConversion(src interface{}) (string, []*bigquery.TableFieldSchema, error) {
v := reflect.ValueOf(src)
if v.Type().Name() == "Key" && strings.Contains(v.Type().PkgPath(), "appengine") {
return "string", nil, nil
} else if v.Type().ConvertibleTo(reflect.TypeOf(time.Time{})) {
return "timestamp", nil, nil
} else {
schema, err := ToSchema(src)
return "record", schema.Fields, err
}
}
func pointerGuard(i interface{}) reflect.Value {
var v reflect.Value
var ok bool
v, ok = i.(reflect.Value)
if !ok {
if t, ok := i.(reflect.Type); ok {
v = reflect.Indirect(reflect.New(t))
}
}
if v.Kind() == reflect.Ptr {
v = reflect.Indirect(reflect.New(v.Type().Elem()))
}
return v
}

View File

@ -0,0 +1,76 @@
package bqschema
import (
"reflect"
"strconv"
"strings"
"google.golang.org/api/bigquery/v2"
)
func ToStructs(result *bigquery.QueryResponse, dst interface{}) error {
var err error
value := reflect.Indirect(reflect.ValueOf(dst))
itemType := value.Type().Elem()
rowCount := len(result.Rows)
nameMap := map[string]string{}
for i := 0; i < itemType.NumField(); i++ {
field := itemType.Field(i)
nameMap[strings.ToLower(field.Name)] = field.Name
}
items := reflect.MakeSlice(value.Type(), rowCount, rowCount)
for i := 0; i < rowCount; i++ {
item := reflect.Indirect(reflect.New(itemType))
row := result.Rows[i]
for j, cell := range row.F {
schemaField := result.Schema.Fields[j]
if name, ok := nameMap[strings.ToLower(schemaField.Name)]; ok {
field := item.FieldByName(name)
if field.IsValid() {
switch field.Kind() {
case reflect.Float64, reflect.Float32:
f, err := strconv.ParseFloat(cell.V.(string), 64)
if err == nil {
field.SetFloat(f)
} else {
return err
}
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
i, err := strconv.ParseInt(cell.V.(string), 10, 64)
if err == nil {
field.SetInt(i)
} else {
return err
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
i, err := strconv.ParseUint(cell.V.(string), 10, 64)
if err == nil {
field.SetUint(i)
} else {
return err
}
case reflect.Bool:
b, err := strconv.ParseBool(cell.V.(string))
if err == nil {
field.SetBool(b)
} else {
return err
}
case reflect.String:
field.Set(reflect.ValueOf(cell.V))
}
}
}
}
items.Index(i).Set(item)
}
value.Set(items)
return err
}

View File

@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
*.test
# Folders
_obj
_test
.vagrant
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe

View File

@ -0,0 +1,33 @@
language: go
go:
- 1.4.3
- 1.5.2
env:
global:
- KAFKA_PEERS=localhost:9091,localhost:9092,localhost:9093,localhost:9094,localhost:9095
- TOXIPROXY_ADDR=http://localhost:8474
- KAFKA_INSTALL_ROOT=/home/travis/kafka
- KAFKA_HOSTNAME=localhost
- DEBUG=true
matrix:
- KAFKA_VERSION=0.8.1.1
- KAFKA_VERSION=0.8.2.2
- KAFKA_VERSION=0.9.0.0
before_install:
- export REPOSITORY_ROOT=${TRAVIS_BUILD_DIR}
- vagrant/install_cluster.sh
- vagrant/boot_cluster.sh
- vagrant/create_topics.sh
install:
- make install_dependencies
script:
- make test
- make vet
- make errcheck
- make fmt
sudo: false

View File

@ -0,0 +1,216 @@
# Changelog
#### Version 1.7.0 (2015-12-11)
New Features:
- Preliminary support for Kafka 0.9
([#572](https://github.com/Shopify/sarama/pull/572)). This comes with several
caveats:
- Protocol-layer support is mostly in place
([#577](https://github.com/Shopify/sarama/pull/577)), however Kafka 0.9
renamed some messages and fields, which we did not in order to preserve API
compatibility.
- The producer and consumer work against 0.9, but the offset manager does
not ([#573](https://github.com/Shopify/sarama/pull/573)).
- TLS support may or may not work
([#581](https://github.com/Shopify/sarama/pull/581)).
Improvements:
- Don't wait for request timeouts on dead brokers, greatly speeding recovery
when the TCP connection is left hanging
([#548](https://github.com/Shopify/sarama/pull/548)).
- Refactored part of the producer. The new version provides a much more elegant
solution to [#449](https://github.com/Shopify/sarama/pull/449). It is also
slightly more efficient, and much more precise in calculating batch sizes
when compression is used
([#549](https://github.com/Shopify/sarama/pull/549),
[#550](https://github.com/Shopify/sarama/pull/550),
[#551](https://github.com/Shopify/sarama/pull/551)).
Bug Fixes:
- Fix race condition in consumer test mock
([#553](https://github.com/Shopify/sarama/pull/553)).
#### Version 1.6.1 (2015-09-25)
Bug Fixes:
- Fix panic that could occur if a user-supplied message value failed to encode
([#449](https://github.com/Shopify/sarama/pull/449)).
#### Version 1.6.0 (2015-09-04)
New Features:
- Implementation of a consumer offset manager using the APIs introduced in
Kafka 0.8.2. The API is designed mainly for integration into a future
high-level consumer, not for direct use, although it is *possible* to use it
directly.
([#461](https://github.com/Shopify/sarama/pull/461)).
Improvements:
- CRC32 calculation is much faster on machines with SSE4.2 instructions,
removing a major hotspot from most profiles
([#255](https://github.com/Shopify/sarama/pull/255)).
Bug Fixes:
- Make protocol decoding more robust against some malformed packets generated
by go-fuzz ([#523](https://github.com/Shopify/sarama/pull/523),
[#525](https://github.com/Shopify/sarama/pull/525)) or found in other ways
([#528](https://github.com/Shopify/sarama/pull/528)).
- Fix a potential race condition panic in the consumer on shutdown
([#529](https://github.com/Shopify/sarama/pull/529)).
#### Version 1.5.0 (2015-08-17)
New Features:
- TLS-encrypted network connections are now supported. This feature is subject
to change when Kafka releases built-in TLS support, but for now this is
enough to work with TLS-terminating proxies
([#154](https://github.com/Shopify/sarama/pull/154)).
Improvements:
- The consumer will not block if a single partition is not drained by the user;
all other partitions will continue to consume normally
([#485](https://github.com/Shopify/sarama/pull/485)).
- Formatting of error strings has been much improved
([#495](https://github.com/Shopify/sarama/pull/495)).
- Internal refactoring of the producer for code cleanliness and to enable
future work ([#300](https://github.com/Shopify/sarama/pull/300)).
Bug Fixes:
- Fix a potential deadlock in the consumer on shutdown
([#475](https://github.com/Shopify/sarama/pull/475)).
#### Version 1.4.3 (2015-07-21)
Bug Fixes:
- Don't include the partitioner in the producer's "fetch partitions"
circuit-breaker ([#466](https://github.com/Shopify/sarama/pull/466)).
- Don't retry messages until the broker is closed when abandoning a broker in
the producer ([#468](https://github.com/Shopify/sarama/pull/468)).
- Update the import path for snappy-go, it has moved again and the API has
changed slightly ([#486](https://github.com/Shopify/sarama/pull/486)).
#### Version 1.4.2 (2015-05-27)
Bug Fixes:
- Update the import path for snappy-go, it has moved from google code to github
([#456](https://github.com/Shopify/sarama/pull/456)).
#### Version 1.4.1 (2015-05-25)
Improvements:
- Optimizations when decoding snappy messages, thanks to John Potocny
([#446](https://github.com/Shopify/sarama/pull/446)).
Bug Fixes:
- Fix hypothetical race conditions on producer shutdown
([#450](https://github.com/Shopify/sarama/pull/450),
[#451](https://github.com/Shopify/sarama/pull/451)).
#### Version 1.4.0 (2015-05-01)
New Features:
- The consumer now implements `Topics()` and `Partitions()` methods to enable
users to dynamically choose what topics/partitions to consume without
instantiating a full client
([#431](https://github.com/Shopify/sarama/pull/431)).
- The partition-consumer now exposes the high water mark offset value returned
by the broker via the `HighWaterMarkOffset()` method ([#339](https://github.com/Shopify/sarama/pull/339)).
- Added a `kafka-console-consumer` tool capable of handling multiple
partitions, and deprecated the now-obsolete `kafka-console-partitionConsumer`
([#439](https://github.com/Shopify/sarama/pull/439),
[#442](https://github.com/Shopify/sarama/pull/442)).
Improvements:
- The producer's logging during retry scenarios is more consistent, more
useful, and slightly less verbose
([#429](https://github.com/Shopify/sarama/pull/429)).
- The client now shuffles its initial list of seed brokers in order to prevent
thundering herd on the first broker in the list
([#441](https://github.com/Shopify/sarama/pull/441)).
Bug Fixes:
- The producer now correctly manages its state if retries occur when it is
shutting down, fixing several instances of confusing behaviour and at least
one potential deadlock ([#419](https://github.com/Shopify/sarama/pull/419)).
- The consumer now handles messages for different partitions asynchronously,
making it much more resilient to specific user code ordering
([#325](https://github.com/Shopify/sarama/pull/325)).
#### Version 1.3.0 (2015-04-16)
New Features:
- The client now tracks consumer group coordinators using
ConsumerMetadataRequests similar to how it tracks partition leadership using
regular MetadataRequests ([#411](https://github.com/Shopify/sarama/pull/411)).
This adds two methods to the client API:
- `Coordinator(consumerGroup string) (*Broker, error)`
- `RefreshCoordinator(consumerGroup string) error`
Improvements:
- ConsumerMetadataResponses now automatically create a Broker object out of the
ID/address/port combination for the Coordinator; accessing the fields
individually has been deprecated
([#413](https://github.com/Shopify/sarama/pull/413)).
- Much improved handling of `OffsetOutOfRange` errors in the consumer.
Consumers will fail to start if the provided offset is out of range
([#418](https://github.com/Shopify/sarama/pull/418))
and they will automatically shut down if the offset falls out of range
([#424](https://github.com/Shopify/sarama/pull/424)).
- Small performance improvement in encoding and decoding protocol messages
([#427](https://github.com/Shopify/sarama/pull/427)).
Bug Fixes:
- Fix a rare race condition in the client's background metadata refresher if
it happens to be activated while the client is being closed
([#422](https://github.com/Shopify/sarama/pull/422)).
#### Version 1.2.0 (2015-04-07)
Improvements:
- The producer's behaviour when `Flush.Frequency` is set is now more intuitive
([#389](https://github.com/Shopify/sarama/pull/389)).
- The producer is now somewhat more memory-efficient during and after retrying
messages due to an improved queue implementation
([#396](https://github.com/Shopify/sarama/pull/396)).
- The consumer produces much more useful logging output when leadership
changes ([#385](https://github.com/Shopify/sarama/pull/385)).
- The client's `GetOffset` method will now automatically refresh metadata and
retry once in the event of stale information or similar
([#394](https://github.com/Shopify/sarama/pull/394)).
- Broker connections now have support for using TCP keepalives
([#407](https://github.com/Shopify/sarama/issues/407)).
Bug Fixes:
- The OffsetCommitRequest message now correctly implements all three possible
API versions ([#390](https://github.com/Shopify/sarama/pull/390),
[#400](https://github.com/Shopify/sarama/pull/400)).
#### Version 1.1.0 (2015-03-20)
Improvements:
- Wrap the producer's partitioner call in a circuit-breaker so that repeatedly
broken topics don't choke throughput
([#373](https://github.com/Shopify/sarama/pull/373)).
Bug Fixes:
- Fix the producer's internal reference counting in certain unusual scenarios
([#367](https://github.com/Shopify/sarama/pull/367)).
- Fix the consumer's internal reference counting in certain unusual scenarios
([#369](https://github.com/Shopify/sarama/pull/369)).
- Fix a condition where the producer's internal control messages could have
gotten stuck ([#368](https://github.com/Shopify/sarama/pull/368)).
- Fix an issue where invalid partition lists would be cached when asking for
metadata for a non-existant topic ([#372](https://github.com/Shopify/sarama/pull/372)).
#### Version 1.0.0 (2015-03-17)
Version 1.0.0 is the first tagged version, and is almost a complete rewrite. The primary differences with previous untagged versions are:
- The producer has been rewritten; there is now a `SyncProducer` with a blocking API, and an `AsyncProducer` that is non-blocking.
- The consumer has been rewritten to only open one connection per broker instead of one connection per partition.
- The main types of Sarama are now interfaces to make depedency injection easy; mock implementations for `Consumer`, `SyncProducer` and `AsyncProducer` are provided in the `github.com/Shopify/sarama/mocks` package.
- For most uses cases, it is no longer necessary to open a `Client`; this will be done for you.
- All the configuration values have been unified in the `Config` struct.
- Much improved test suite.

View File

@ -0,0 +1,31 @@
# Contributing
Contributions are always welcome, both reporting issues and submitting pull requests!
### Reporting issues
Please make sure to include any potentially useful information in the issue, so we can pinpoint the issue faster without going back and forth.
- What SHA of Sarama are you running? If this is not the latest SHA on the master branch, please try if the problem persists with the latest version.
- You can set `sarama.Logger` to a [log.Logger](http://golang.org/pkg/log/#Logger) instance to capture debug output. Please include it in your issue description.
- Also look at the logs of the Kafka broker you are connected to. If you see anything out of the ordinary, please include it.
Also, please include the following information about your environment, so we can help you faster:
- What version of Kafka are you using?
- What version of Go are you using?
- What are the values of your Producer/Consumer/Client configuration?
### Submitting pull requests
We will gladly accept bug fixes, or additions to this library. Please fork this library, commit & push your changes, and open a pull request. Because this library is in production use by many people and applications, we code review all additions. To make the review process go as smooth as possible, please consider the following.
- If you plan to work on something major, please open an issue to discuss the design first.
- Don't break backwards compatibility. If you really have to, open an issue to discuss this first.
- Make sure to use the `go fmt` command to format your code according to the standards. Even better, set up your editor to do this for you when saving.
- Run [go vet](https://godoc.org/golang.org/x/tools/cmd/vet) to detect any suspicious constructs in your code that could be bugs.
- Explicitly handle all error return values. If you really want to ignore an error value, you can assign it to `_`.You can use [errcheck](https://github.com/kisielk/errcheck) to verify whether you have handled all errors.
- You may also want to run [golint](https://github.com/golang/lint) as well to detect style problems.
- Add tests that cover the changes you made. Make sure to run `go test` with the `-race` argument to test for race conditions.
- Make sure your code is supported by all the Go versions we support. You can rely on [Travis CI](https://travis-ci.org/Shopify/sarama) for testing older Go versions

View File

@ -0,0 +1,20 @@
Copyright (c) 2013 Evan Huus
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,24 @@
default: fmt vet errcheck test
test:
go test -v -timeout 60s -race ./...
vet:
go vet ./...
errcheck:
errcheck github.com/Shopify/sarama/...
fmt:
@if [ -n "$$(go fmt ./...)" ]; then echo 'Please run go fmt on your code.' && exit 1; fi
install_dependencies: install_errcheck install_go_vet get
install_errcheck:
go get github.com/kisielk/errcheck
install_go_vet:
go get golang.org/x/tools/cmd/vet
get:
go get -t

View File

@ -0,0 +1,36 @@
sarama
======
[![GoDoc](https://godoc.org/github.com/Shopify/sarama?status.png)](https://godoc.org/github.com/Shopify/sarama)
[![Build Status](https://travis-ci.org/Shopify/sarama.svg?branch=master)](https://travis-ci.org/Shopify/sarama)
Sarama is an MIT-licensed Go client library for [Apache Kafka](https://kafka.apache.org/) version 0.8 (and later).
### Getting started
- API documentation and examples are available via [godoc](https://godoc.org/github.com/Shopify/sarama).
- Mocks for testing are available in the [mocks](./mocks) subpackage.
- The [examples](./examples) directory contains more elaborate example applications.
- The [tools](./tools) directory contains command line tools that can be useful for testing, diagnostics, and instrumentation.
### Compatibility and API stability
Sarama provides a "2 releases + 2 months" compatibility guarantee: we support
the two latest stable releases of Kafka and Go, and we provide a two month
grace period for older releases. This means we currently officially support
Go 1.4 and 1.5, and Kafka 0.8.1 and 0.8.2, although older releases are still
likely to work.
Sarama follows semantic versioning and provides API stability via the gopkg.in service.
You can import a version with a guaranteed stable API via http://gopkg.in/Shopify/sarama.v1.
A changelog is available [here](CHANGELOG.md).
### Contributing
* Get started by checking our [contribution guidelines](https://github.com/Shopify/sarama/blob/master/CONTRIBUTING.md).
* Read the [Sarama wiki](https://github.com/Shopify/sarama/wiki) for more
technical and design details.
* The [Kafka Protocol Specification](https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol)
contains a wealth of useful information.
* For more general issues, there is [a google group](https://groups.google.com/forum/#!forum/kafka-clients) for Kafka client developers.
* If you have any questions, just ask!

View File

@ -0,0 +1,19 @@
# -*- mode: ruby -*-
# vi: set ft=ruby :
# Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"
MEMORY = 3072
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.box = "ubuntu/trusty64"
config.vm.provision :shell, path: "vagrant/provision.sh"
config.vm.network "private_network", ip: "192.168.100.67"
config.vm.provider "virtualbox" do |v|
v.memory = MEMORY
end
end

View File

@ -0,0 +1,891 @@
package sarama
import (
"fmt"
"sync"
"time"
"github.com/eapache/go-resiliency/breaker"
"github.com/eapache/queue"
)
// AsyncProducer publishes Kafka messages using a non-blocking API. It routes messages
// to the correct broker for the provided topic-partition, refreshing metadata as appropriate,
// and parses responses for errors. You must read from the Errors() channel or the
// producer will deadlock. You must call Close() or AsyncClose() on a producer to avoid
// leaks: it will not be garbage-collected automatically when it passes out of
// scope.
type AsyncProducer interface {
// AsyncClose triggers a shutdown of the producer, flushing any messages it may
// have buffered. The shutdown has completed when both the Errors and Successes
// channels have been closed. When calling AsyncClose, you *must* continue to
// read from those channels in order to drain the results of any messages in
// flight.
AsyncClose()
// Close shuts down the producer and flushes any messages it may have buffered.
// You must call this function before a producer object passes out of scope, as
// it may otherwise leak memory. You must call this before calling Close on the
// underlying client.
Close() error
// Input is the input channel for the user to write messages to that they
// wish to send.
Input() chan<- *ProducerMessage
// Successes is the success output channel back to the user when AckSuccesses is
// enabled. If Return.Successes is true, you MUST read from this channel or the
// Producer will deadlock. It is suggested that you send and read messages
// together in a single select statement.
Successes() <-chan *ProducerMessage
// Errors is the error output channel back to the user. You MUST read from this
// channel or the Producer will deadlock when the channel is full. Alternatively,
// you can set Producer.Return.Errors in your config to false, which prevents
// errors to be returned.
Errors() <-chan *ProducerError
}
type asyncProducer struct {
client Client
conf *Config
ownClient bool
errors chan *ProducerError
input, successes, retries chan *ProducerMessage
inFlight sync.WaitGroup
brokers map[*Broker]chan<- *ProducerMessage
brokerRefs map[chan<- *ProducerMessage]int
brokerLock sync.Mutex
}
// NewAsyncProducer creates a new AsyncProducer using the given broker addresses and configuration.
func NewAsyncProducer(addrs []string, conf *Config) (AsyncProducer, error) {
client, err := NewClient(addrs, conf)
if err != nil {
return nil, err
}
p, err := NewAsyncProducerFromClient(client)
if err != nil {
return nil, err
}
p.(*asyncProducer).ownClient = true
return p, nil
}
// NewAsyncProducerFromClient creates a new Producer using the given client. It is still
// necessary to call Close() on the underlying client when shutting down this producer.
func NewAsyncProducerFromClient(client Client) (AsyncProducer, error) {
// Check that we are not dealing with a closed Client before processing any other arguments
if client.Closed() {
return nil, ErrClosedClient
}
p := &asyncProducer{
client: client,
conf: client.Config(),
errors: make(chan *ProducerError),
input: make(chan *ProducerMessage),
successes: make(chan *ProducerMessage),
retries: make(chan *ProducerMessage),
brokers: make(map[*Broker]chan<- *ProducerMessage),
brokerRefs: make(map[chan<- *ProducerMessage]int),
}
// launch our singleton dispatchers
go withRecover(p.dispatcher)
go withRecover(p.retryHandler)
return p, nil
}
type flagSet int8
const (
syn flagSet = 1 << iota // first message from partitionProducer to brokerProducer
fin // final message from partitionProducer to brokerProducer and back
shutdown // start the shutdown process
)
// ProducerMessage is the collection of elements passed to the Producer in order to send a message.
type ProducerMessage struct {
Topic string // The Kafka topic for this message.
// The partitioning key for this message. Pre-existing Encoders include
// StringEncoder and ByteEncoder.
Key Encoder
// The actual message to store in Kafka. Pre-existing Encoders include
// StringEncoder and ByteEncoder.
Value Encoder
// This field is used to hold arbitrary data you wish to include so it
// will be available when receiving on the Successes and Errors channels.
// Sarama completely ignores this field and is only to be used for
// pass-through data.
Metadata interface{}
// Below this point are filled in by the producer as the message is processed
// Offset is the offset of the message stored on the broker. This is only
// guaranteed to be defined if the message was successfully delivered and
// RequiredAcks is not NoResponse.
Offset int64
// Partition is the partition that the message was sent to. This is only
// guaranteed to be defined if the message was successfully delivered.
Partition int32
retries int
flags flagSet
}
const producerMessageOverhead = 26 // the metadata overhead of CRC, flags, etc.
func (m *ProducerMessage) byteSize() int {
size := producerMessageOverhead
if m.Key != nil {
size += m.Key.Length()
}
if m.Value != nil {
size += m.Value.Length()
}
return size
}
func (m *ProducerMessage) clear() {
m.flags = 0
m.retries = 0
}
// ProducerError is the type of error generated when the producer fails to deliver a message.
// It contains the original ProducerMessage as well as the actual error value.
type ProducerError struct {
Msg *ProducerMessage
Err error
}
func (pe ProducerError) Error() string {
return fmt.Sprintf("kafka: Failed to produce message to topic %s: %s", pe.Msg.Topic, pe.Err)
}
// ProducerErrors is a type that wraps a batch of "ProducerError"s and implements the Error interface.
// It can be returned from the Producer's Close method to avoid the need to manually drain the Errors channel
// when closing a producer.
type ProducerErrors []*ProducerError
func (pe ProducerErrors) Error() string {
return fmt.Sprintf("kafka: Failed to deliver %d messages.", len(pe))
}
func (p *asyncProducer) Errors() <-chan *ProducerError {
return p.errors
}
func (p *asyncProducer) Successes() <-chan *ProducerMessage {
return p.successes
}
func (p *asyncProducer) Input() chan<- *ProducerMessage {
return p.input
}
func (p *asyncProducer) Close() error {
p.AsyncClose()
if p.conf.Producer.Return.Successes {
go withRecover(func() {
for _ = range p.successes {
}
})
}
var errors ProducerErrors
if p.conf.Producer.Return.Errors {
for event := range p.errors {
errors = append(errors, event)
}
}
if len(errors) > 0 {
return errors
}
return nil
}
func (p *asyncProducer) AsyncClose() {
go withRecover(p.shutdown)
}
// singleton
// dispatches messages by topic
func (p *asyncProducer) dispatcher() {
handlers := make(map[string]chan<- *ProducerMessage)
shuttingDown := false
for msg := range p.input {
if msg == nil {
Logger.Println("Something tried to send a nil message, it was ignored.")
continue
}
if msg.flags&shutdown != 0 {
shuttingDown = true
p.inFlight.Done()
continue
} else if msg.retries == 0 {
if shuttingDown {
// we can't just call returnError here because that decrements the wait group,
// which hasn't been incremented yet for this message, and shouldn't be
pErr := &ProducerError{Msg: msg, Err: ErrShuttingDown}
if p.conf.Producer.Return.Errors {
p.errors <- pErr
} else {
Logger.Println(pErr)
}
continue
}
p.inFlight.Add(1)
}
if msg.byteSize() > p.conf.Producer.MaxMessageBytes {
p.returnError(msg, ErrMessageSizeTooLarge)
continue
}
handler := handlers[msg.Topic]
if handler == nil {
handler = p.newTopicProducer(msg.Topic)
handlers[msg.Topic] = handler
}
handler <- msg
}
for _, handler := range handlers {
close(handler)
}
}
// one per topic
// partitions messages, then dispatches them by partition
type topicProducer struct {
parent *asyncProducer
topic string
input <-chan *ProducerMessage
breaker *breaker.Breaker
handlers map[int32]chan<- *ProducerMessage
partitioner Partitioner
}
func (p *asyncProducer) newTopicProducer(topic string) chan<- *ProducerMessage {
input := make(chan *ProducerMessage, p.conf.ChannelBufferSize)
tp := &topicProducer{
parent: p,
topic: topic,
input: input,
breaker: breaker.New(3, 1, 10*time.Second),
handlers: make(map[int32]chan<- *ProducerMessage),
partitioner: p.conf.Producer.Partitioner(topic),
}
go withRecover(tp.dispatch)
return input
}
func (tp *topicProducer) dispatch() {
for msg := range tp.input {
if msg.retries == 0 {
if err := tp.partitionMessage(msg); err != nil {
tp.parent.returnError(msg, err)
continue
}
}
handler := tp.handlers[msg.Partition]
if handler == nil {
handler = tp.parent.newPartitionProducer(msg.Topic, msg.Partition)
tp.handlers[msg.Partition] = handler
}
handler <- msg
}
for _, handler := range tp.handlers {
close(handler)
}
}
func (tp *topicProducer) partitionMessage(msg *ProducerMessage) error {
var partitions []int32
err := tp.breaker.Run(func() (err error) {
if tp.partitioner.RequiresConsistency() {
partitions, err = tp.parent.client.Partitions(msg.Topic)
} else {
partitions, err = tp.parent.client.WritablePartitions(msg.Topic)
}
return
})
if err != nil {
return err
}
numPartitions := int32(len(partitions))
if numPartitions == 0 {
return ErrLeaderNotAvailable
}
choice, err := tp.partitioner.Partition(msg, numPartitions)
if err != nil {
return err
} else if choice < 0 || choice >= numPartitions {
return ErrInvalidPartition
}
msg.Partition = partitions[choice]
return nil
}
// one per partition per topic
// dispatches messages to the appropriate broker
// also responsible for maintaining message order during retries
type partitionProducer struct {
parent *asyncProducer
topic string
partition int32
input <-chan *ProducerMessage
leader *Broker
breaker *breaker.Breaker
output chan<- *ProducerMessage
// highWatermark tracks the "current" retry level, which is the only one where we actually let messages through,
// all other messages get buffered in retryState[msg.retries].buf to preserve ordering
// retryState[msg.retries].expectChaser simply tracks whether we've seen a fin message for a given level (and
// therefore whether our buffer is complete and safe to flush)
highWatermark int
retryState []partitionRetryState
}
type partitionRetryState struct {
buf []*ProducerMessage
expectChaser bool
}
func (p *asyncProducer) newPartitionProducer(topic string, partition int32) chan<- *ProducerMessage {
input := make(chan *ProducerMessage, p.conf.ChannelBufferSize)
pp := &partitionProducer{
parent: p,
topic: topic,
partition: partition,
input: input,
breaker: breaker.New(3, 1, 10*time.Second),
retryState: make([]partitionRetryState, p.conf.Producer.Retry.Max+1),
}
go withRecover(pp.dispatch)
return input
}
func (pp *partitionProducer) dispatch() {
// try to prefetch the leader; if this doesn't work, we'll do a proper call to `updateLeader`
// on the first message
pp.leader, _ = pp.parent.client.Leader(pp.topic, pp.partition)
if pp.leader != nil {
pp.output = pp.parent.getBrokerProducer(pp.leader)
pp.parent.inFlight.Add(1) // we're generating a syn message; track it so we don't shut down while it's still inflight
pp.output <- &ProducerMessage{Topic: pp.topic, Partition: pp.partition, flags: syn}
}
for msg := range pp.input {
if msg.retries > pp.highWatermark {
// a new, higher, retry level; handle it and then back off
pp.newHighWatermark(msg.retries)
time.Sleep(pp.parent.conf.Producer.Retry.Backoff)
} else if pp.highWatermark > 0 {
// we are retrying something (else highWatermark would be 0) but this message is not a *new* retry level
if msg.retries < pp.highWatermark {
// in fact this message is not even the current retry level, so buffer it for now (unless it's a just a fin)
if msg.flags&fin == fin {
pp.retryState[msg.retries].expectChaser = false
pp.parent.inFlight.Done() // this fin is now handled and will be garbage collected
} else {
pp.retryState[msg.retries].buf = append(pp.retryState[msg.retries].buf, msg)
}
continue
} else if msg.flags&fin == fin {
// this message is of the current retry level (msg.retries == highWatermark) and the fin flag is set,
// meaning this retry level is done and we can go down (at least) one level and flush that
pp.retryState[pp.highWatermark].expectChaser = false
pp.flushRetryBuffers()
pp.parent.inFlight.Done() // this fin is now handled and will be garbage collected
continue
}
}
// if we made it this far then the current msg contains real data, and can be sent to the next goroutine
// without breaking any of our ordering guarantees
if pp.output == nil {
if err := pp.updateLeader(); err != nil {
pp.parent.returnError(msg, err)
time.Sleep(pp.parent.conf.Producer.Retry.Backoff)
continue
}
Logger.Printf("producer/leader/%s/%d selected broker %d\n", pp.topic, pp.partition, pp.leader.ID())
}
pp.output <- msg
}
if pp.output != nil {
pp.parent.unrefBrokerProducer(pp.leader, pp.output)
}
}
func (pp *partitionProducer) newHighWatermark(hwm int) {
Logger.Printf("producer/leader/%s/%d state change to [retrying-%d]\n", pp.topic, pp.partition, hwm)
pp.highWatermark = hwm
// send off a fin so that we know when everything "in between" has made it
// back to us and we can safely flush the backlog (otherwise we risk re-ordering messages)
pp.retryState[pp.highWatermark].expectChaser = true
pp.parent.inFlight.Add(1) // we're generating a fin message; track it so we don't shut down while it's still inflight
pp.output <- &ProducerMessage{Topic: pp.topic, Partition: pp.partition, flags: fin, retries: pp.highWatermark - 1}
// a new HWM means that our current broker selection is out of date
Logger.Printf("producer/leader/%s/%d abandoning broker %d\n", pp.topic, pp.partition, pp.leader.ID())
pp.parent.unrefBrokerProducer(pp.leader, pp.output)
pp.output = nil
}
func (pp *partitionProducer) flushRetryBuffers() {
Logger.Printf("producer/leader/%s/%d state change to [flushing-%d]\n", pp.topic, pp.partition, pp.highWatermark)
for {
pp.highWatermark--
if pp.output == nil {
if err := pp.updateLeader(); err != nil {
pp.parent.returnErrors(pp.retryState[pp.highWatermark].buf, err)
goto flushDone
}
Logger.Printf("producer/leader/%s/%d selected broker %d\n", pp.topic, pp.partition, pp.leader.ID())
}
for _, msg := range pp.retryState[pp.highWatermark].buf {
pp.output <- msg
}
flushDone:
pp.retryState[pp.highWatermark].buf = nil
if pp.retryState[pp.highWatermark].expectChaser {
Logger.Printf("producer/leader/%s/%d state change to [retrying-%d]\n", pp.topic, pp.partition, pp.highWatermark)
break
} else if pp.highWatermark == 0 {
Logger.Printf("producer/leader/%s/%d state change to [normal]\n", pp.topic, pp.partition)
break
}
}
}
func (pp *partitionProducer) updateLeader() error {
return pp.breaker.Run(func() (err error) {
if err = pp.parent.client.RefreshMetadata(pp.topic); err != nil {
return err
}
if pp.leader, err = pp.parent.client.Leader(pp.topic, pp.partition); err != nil {
return err
}
pp.output = pp.parent.getBrokerProducer(pp.leader)
pp.parent.inFlight.Add(1) // we're generating a syn message; track it so we don't shut down while it's still inflight
pp.output <- &ProducerMessage{Topic: pp.topic, Partition: pp.partition, flags: syn}
return nil
})
}
// one per broker; also constructs an associated flusher
func (p *asyncProducer) newBrokerProducer(broker *Broker) chan<- *ProducerMessage {
var (
input = make(chan *ProducerMessage)
bridge = make(chan *produceSet)
responses = make(chan *brokerProducerResponse)
)
bp := &brokerProducer{
parent: p,
broker: broker,
input: input,
output: bridge,
responses: responses,
buffer: newProduceSet(p),
currentRetries: make(map[string]map[int32]error),
}
go withRecover(bp.run)
// minimal bridge to make the network response `select`able
go withRecover(func() {
for set := range bridge {
request := set.buildRequest()
response, err := broker.Produce(request)
responses <- &brokerProducerResponse{
set: set,
err: err,
res: response,
}
}
close(responses)
})
return input
}
type brokerProducerResponse struct {
set *produceSet
err error
res *ProduceResponse
}
// groups messages together into appropriately-sized batches for sending to the broker
// handles state related to retries etc
type brokerProducer struct {
parent *asyncProducer
broker *Broker
input <-chan *ProducerMessage
output chan<- *produceSet
responses <-chan *brokerProducerResponse
buffer *produceSet
timer <-chan time.Time
timerFired bool
closing error
currentRetries map[string]map[int32]error
}
func (bp *brokerProducer) run() {
var output chan<- *produceSet
Logger.Printf("producer/broker/%d starting up\n", bp.broker.ID())
for {
select {
case msg := <-bp.input:
if msg == nil {
goto shutdown
}
if msg.flags&syn == syn {
Logger.Printf("producer/broker/%d state change to [open] on %s/%d\n",
bp.broker.ID(), msg.Topic, msg.Partition)
if bp.currentRetries[msg.Topic] == nil {
bp.currentRetries[msg.Topic] = make(map[int32]error)
}
bp.currentRetries[msg.Topic][msg.Partition] = nil
bp.parent.inFlight.Done()
continue
}
if reason := bp.needsRetry(msg); reason != nil {
bp.parent.retryMessage(msg, reason)
if bp.closing == nil && msg.flags&fin == fin {
// we were retrying this partition but we can start processing again
delete(bp.currentRetries[msg.Topic], msg.Partition)
Logger.Printf("producer/broker/%d state change to [closed] on %s/%d\n",
bp.broker.ID(), msg.Topic, msg.Partition)
}
continue
}
if bp.buffer.wouldOverflow(msg) {
if err := bp.waitForSpace(msg); err != nil {
bp.parent.retryMessage(msg, err)
continue
}
}
if err := bp.buffer.add(msg); err != nil {
bp.parent.returnError(msg, err)
continue
}
if bp.parent.conf.Producer.Flush.Frequency > 0 && bp.timer == nil {
bp.timer = time.After(bp.parent.conf.Producer.Flush.Frequency)
}
case <-bp.timer:
bp.timerFired = true
case output <- bp.buffer:
bp.rollOver()
case response := <-bp.responses:
bp.handleResponse(response)
}
if bp.timerFired || bp.buffer.readyToFlush() {
output = bp.output
} else {
output = nil
}
}
shutdown:
for !bp.buffer.empty() {
select {
case response := <-bp.responses:
bp.handleResponse(response)
case bp.output <- bp.buffer:
bp.rollOver()
}
}
close(bp.output)
for response := range bp.responses {
bp.handleResponse(response)
}
Logger.Printf("producer/broker/%d shut down\n", bp.broker.ID())
}
func (bp *brokerProducer) needsRetry(msg *ProducerMessage) error {
if bp.closing != nil {
return bp.closing
}
return bp.currentRetries[msg.Topic][msg.Partition]
}
func (bp *brokerProducer) waitForSpace(msg *ProducerMessage) error {
Logger.Printf("producer/broker/%d maximum request accumulated, waiting for space\n", bp.broker.ID())
for {
select {
case response := <-bp.responses:
bp.handleResponse(response)
// handling a response can change our state, so re-check some things
if reason := bp.needsRetry(msg); reason != nil {
return reason
} else if !bp.buffer.wouldOverflow(msg) {
return nil
}
case bp.output <- bp.buffer:
bp.rollOver()
return nil
}
}
}
func (bp *brokerProducer) rollOver() {
bp.timer = nil
bp.timerFired = false
bp.buffer = newProduceSet(bp.parent)
}
func (bp *brokerProducer) handleResponse(response *brokerProducerResponse) {
if response.err != nil {
bp.handleError(response.set, response.err)
} else {
bp.handleSuccess(response.set, response.res)
}
if bp.buffer.empty() {
bp.rollOver() // this can happen if the response invalidated our buffer
}
}
func (bp *brokerProducer) handleSuccess(sent *produceSet, response *ProduceResponse) {
// we iterate through the blocks in the request set, not the response, so that we notice
// if the response is missing a block completely
sent.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
if response == nil {
// this only happens when RequiredAcks is NoResponse, so we have to assume success
bp.parent.returnSuccesses(msgs)
return
}
block := response.GetBlock(topic, partition)
if block == nil {
bp.parent.returnErrors(msgs, ErrIncompleteResponse)
return
}
switch block.Err {
// Success
case ErrNoError:
for i, msg := range msgs {
msg.Offset = block.Offset + int64(i)
}
bp.parent.returnSuccesses(msgs)
// Retriable errors
case ErrUnknownTopicOrPartition, ErrNotLeaderForPartition, ErrLeaderNotAvailable,
ErrRequestTimedOut, ErrNotEnoughReplicas, ErrNotEnoughReplicasAfterAppend:
Logger.Printf("producer/broker/%d state change to [retrying] on %s/%d because %v\n",
bp.broker.ID(), topic, partition, block.Err)
bp.currentRetries[topic][partition] = block.Err
bp.parent.retryMessages(msgs, block.Err)
bp.parent.retryMessages(bp.buffer.dropPartition(topic, partition), block.Err)
// Other non-retriable errors
default:
bp.parent.returnErrors(msgs, block.Err)
}
})
}
func (bp *brokerProducer) handleError(sent *produceSet, err error) {
switch err.(type) {
case PacketEncodingError:
sent.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
bp.parent.returnErrors(msgs, err)
})
default:
Logger.Printf("producer/broker/%d state change to [closing] because %s\n", bp.broker.ID(), err)
bp.parent.abandonBrokerConnection(bp.broker)
_ = bp.broker.Close()
bp.closing = err
sent.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
bp.parent.retryMessages(msgs, err)
})
bp.buffer.eachPartition(func(topic string, partition int32, msgs []*ProducerMessage) {
bp.parent.retryMessages(msgs, err)
})
bp.rollOver()
}
}
// singleton
// effectively a "bridge" between the flushers and the dispatcher in order to avoid deadlock
// based on https://godoc.org/github.com/eapache/channels#InfiniteChannel
func (p *asyncProducer) retryHandler() {
var msg *ProducerMessage
buf := queue.New()
for {
if buf.Length() == 0 {
msg = <-p.retries
} else {
select {
case msg = <-p.retries:
case p.input <- buf.Peek().(*ProducerMessage):
buf.Remove()
continue
}
}
if msg == nil {
return
}
buf.Add(msg)
}
}
// utility functions
func (p *asyncProducer) shutdown() {
Logger.Println("Producer shutting down.")
p.inFlight.Add(1)
p.input <- &ProducerMessage{flags: shutdown}
p.inFlight.Wait()
if p.ownClient {
err := p.client.Close()
if err != nil {
Logger.Println("producer/shutdown failed to close the embedded client:", err)
}
}
close(p.input)
close(p.retries)
close(p.errors)
close(p.successes)
}
func (p *asyncProducer) returnError(msg *ProducerMessage, err error) {
msg.clear()
pErr := &ProducerError{Msg: msg, Err: err}
if p.conf.Producer.Return.Errors {
p.errors <- pErr
} else {
Logger.Println(pErr)
}
p.inFlight.Done()
}
func (p *asyncProducer) returnErrors(batch []*ProducerMessage, err error) {
for _, msg := range batch {
p.returnError(msg, err)
}
}
func (p *asyncProducer) returnSuccesses(batch []*ProducerMessage) {
for _, msg := range batch {
if p.conf.Producer.Return.Successes {
msg.clear()
p.successes <- msg
}
p.inFlight.Done()
}
}
func (p *asyncProducer) retryMessage(msg *ProducerMessage, err error) {
if msg.retries >= p.conf.Producer.Retry.Max {
p.returnError(msg, err)
} else {
msg.retries++
p.retries <- msg
}
}
func (p *asyncProducer) retryMessages(batch []*ProducerMessage, err error) {
for _, msg := range batch {
p.retryMessage(msg, err)
}
}
func (p *asyncProducer) getBrokerProducer(broker *Broker) chan<- *ProducerMessage {
p.brokerLock.Lock()
defer p.brokerLock.Unlock()
bp := p.brokers[broker]
if bp == nil {
bp = p.newBrokerProducer(broker)
p.brokers[broker] = bp
p.brokerRefs[bp] = 0
}
p.brokerRefs[bp]++
return bp
}
func (p *asyncProducer) unrefBrokerProducer(broker *Broker, bp chan<- *ProducerMessage) {
p.brokerLock.Lock()
defer p.brokerLock.Unlock()
p.brokerRefs[bp]--
if p.brokerRefs[bp] == 0 {
close(bp)
delete(p.brokerRefs, bp)
if p.brokers[broker] == bp {
delete(p.brokers, broker)
}
}
}
func (p *asyncProducer) abandonBrokerConnection(broker *Broker) {
p.brokerLock.Lock()
defer p.brokerLock.Unlock()
delete(p.brokers, broker)
}

View File

@ -0,0 +1,395 @@
package sarama
import (
"crypto/tls"
"fmt"
"io"
"net"
"strconv"
"sync"
"sync/atomic"
"time"
)
// Broker represents a single Kafka broker connection. All operations on this object are entirely concurrency-safe.
type Broker struct {
id int32
addr string
conf *Config
correlationID int32
conn net.Conn
connErr error
lock sync.Mutex
opened int32
responses chan responsePromise
done chan bool
}
type responsePromise struct {
correlationID int32
packets chan []byte
errors chan error
}
// NewBroker creates and returns a Broker targetting the given host:port address.
// This does not attempt to actually connect, you have to call Open() for that.
func NewBroker(addr string) *Broker {
return &Broker{id: -1, addr: addr}
}
// Open tries to connect to the Broker if it is not already connected or connecting, but does not block
// waiting for the connection to complete. This means that any subsequent operations on the broker will
// block waiting for the connection to succeed or fail. To get the effect of a fully synchronous Open call,
// follow it by a call to Connected(). The only errors Open will return directly are ConfigurationError or
// AlreadyConnected. If conf is nil, the result of NewConfig() is used.
func (b *Broker) Open(conf *Config) error {
if conf == nil {
conf = NewConfig()
}
err := conf.Validate()
if err != nil {
return err
}
if !atomic.CompareAndSwapInt32(&b.opened, 0, 1) {
return ErrAlreadyConnected
}
b.lock.Lock()
if b.conn != nil {
b.lock.Unlock()
Logger.Printf("Failed to connect to broker %s: %s\n", b.addr, ErrAlreadyConnected)
return ErrAlreadyConnected
}
go withRecover(func() {
defer b.lock.Unlock()
dialer := net.Dialer{
Timeout: conf.Net.DialTimeout,
KeepAlive: conf.Net.KeepAlive,
}
if conf.Net.TLS.Enable {
b.conn, b.connErr = tls.DialWithDialer(&dialer, "tcp", b.addr, conf.Net.TLS.Config)
} else {
b.conn, b.connErr = dialer.Dial("tcp", b.addr)
}
if b.connErr != nil {
b.conn = nil
atomic.StoreInt32(&b.opened, 0)
Logger.Printf("Failed to connect to broker %s: %s\n", b.addr, b.connErr)
return
}
b.conf = conf
b.done = make(chan bool)
b.responses = make(chan responsePromise, b.conf.Net.MaxOpenRequests-1)
if b.id >= 0 {
Logger.Printf("Connected to broker at %s (registered as #%d)\n", b.addr, b.id)
} else {
Logger.Printf("Connected to broker at %s (unregistered)\n", b.addr)
}
go withRecover(b.responseReceiver)
})
return nil
}
// Connected returns true if the broker is connected and false otherwise. If the broker is not
// connected but it had tried to connect, the error from that connection attempt is also returned.
func (b *Broker) Connected() (bool, error) {
b.lock.Lock()
defer b.lock.Unlock()
return b.conn != nil, b.connErr
}
func (b *Broker) Close() error {
b.lock.Lock()
defer b.lock.Unlock()
if b.conn == nil {
return ErrNotConnected
}
close(b.responses)
<-b.done
err := b.conn.Close()
b.conn = nil
b.connErr = nil
b.done = nil
b.responses = nil
atomic.StoreInt32(&b.opened, 0)
if err == nil {
Logger.Printf("Closed connection to broker %s\n", b.addr)
} else {
Logger.Printf("Error while closing connection to broker %s: %s\n", b.addr, err)
}
return err
}
// ID returns the broker ID retrieved from Kafka's metadata, or -1 if that is not known.
func (b *Broker) ID() int32 {
return b.id
}
// Addr returns the broker address as either retrieved from Kafka's metadata or passed to NewBroker.
func (b *Broker) Addr() string {
return b.addr
}
func (b *Broker) GetMetadata(request *MetadataRequest) (*MetadataResponse, error) {
response := new(MetadataResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) GetConsumerMetadata(request *ConsumerMetadataRequest) (*ConsumerMetadataResponse, error) {
response := new(ConsumerMetadataResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) GetAvailableOffsets(request *OffsetRequest) (*OffsetResponse, error) {
response := new(OffsetResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) Produce(request *ProduceRequest) (*ProduceResponse, error) {
var response *ProduceResponse
var err error
if request.RequiredAcks == NoResponse {
err = b.sendAndReceive(request, nil)
} else {
response = new(ProduceResponse)
err = b.sendAndReceive(request, response)
}
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) Fetch(request *FetchRequest) (*FetchResponse, error) {
response := new(FetchResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) CommitOffset(request *OffsetCommitRequest) (*OffsetCommitResponse, error) {
response := new(OffsetCommitResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) FetchOffset(request *OffsetFetchRequest) (*OffsetFetchResponse, error) {
response := new(OffsetFetchResponse)
err := b.sendAndReceive(request, response)
if err != nil {
return nil, err
}
return response, nil
}
func (b *Broker) send(rb requestBody, promiseResponse bool) (*responsePromise, error) {
b.lock.Lock()
defer b.lock.Unlock()
if b.conn == nil {
if b.connErr != nil {
return nil, b.connErr
}
return nil, ErrNotConnected
}
req := &request{correlationID: b.correlationID, clientID: b.conf.ClientID, body: rb}
buf, err := encode(req)
if err != nil {
return nil, err
}
err = b.conn.SetWriteDeadline(time.Now().Add(b.conf.Net.WriteTimeout))
if err != nil {
return nil, err
}
_, err = b.conn.Write(buf)
if err != nil {
return nil, err
}
b.correlationID++
if !promiseResponse {
return nil, nil
}
promise := responsePromise{req.correlationID, make(chan []byte), make(chan error)}
b.responses <- promise
return &promise, nil
}
func (b *Broker) sendAndReceive(req requestBody, res decoder) error {
promise, err := b.send(req, res != nil)
if err != nil {
return err
}
if promise == nil {
return nil
}
select {
case buf := <-promise.packets:
return decode(buf, res)
case err = <-promise.errors:
return err
}
}
func (b *Broker) decode(pd packetDecoder) (err error) {
b.id, err = pd.getInt32()
if err != nil {
return err
}
host, err := pd.getString()
if err != nil {
return err
}
port, err := pd.getInt32()
if err != nil {
return err
}
b.addr = net.JoinHostPort(host, fmt.Sprint(port))
if _, _, err := net.SplitHostPort(b.addr); err != nil {
return err
}
return nil
}
func (b *Broker) encode(pe packetEncoder) (err error) {
host, portstr, err := net.SplitHostPort(b.addr)
if err != nil {
return err
}
port, err := strconv.Atoi(portstr)
if err != nil {
return err
}
pe.putInt32(b.id)
err = pe.putString(host)
if err != nil {
return err
}
pe.putInt32(int32(port))
return nil
}
func (b *Broker) responseReceiver() {
var dead error
header := make([]byte, 8)
for response := range b.responses {
if dead != nil {
response.errors <- dead
continue
}
err := b.conn.SetReadDeadline(time.Now().Add(b.conf.Net.ReadTimeout))
if err != nil {
dead = err
response.errors <- err
continue
}
_, err = io.ReadFull(b.conn, header)
if err != nil {
dead = err
response.errors <- err
continue
}
decodedHeader := responseHeader{}
err = decode(header, &decodedHeader)
if err != nil {
dead = err
response.errors <- err
continue
}
if decodedHeader.correlationID != response.correlationID {
// TODO if decoded ID < cur ID, discard until we catch up
// TODO if decoded ID > cur ID, save it so when cur ID catches up we have a response
dead = PacketDecodingError{fmt.Sprintf("correlation ID didn't match, wanted %d, got %d", response.correlationID, decodedHeader.correlationID)}
response.errors <- dead
continue
}
buf := make([]byte, decodedHeader.length-4)
_, err = io.ReadFull(b.conn, buf)
if err != nil {
dead = err
response.errors <- err
continue
}
response.packets <- buf
}
close(b.done)
}

View File

@ -0,0 +1,732 @@
package sarama
import (
"math/rand"
"sort"
"sync"
"time"
)
// Client is a generic Kafka client. It manages connections to one or more Kafka brokers.
// You MUST call Close() on a client to avoid leaks, it will not be garbage-collected
// automatically when it passes out of scope. A single client can be safely shared by
// multiple concurrent Producers and Consumers.
type Client interface {
// Config returns the Config struct of the client. This struct should not be
// altered after it has been created.
Config() *Config
// Topics returns the set of available topics as retrieved from cluster metadata.
Topics() ([]string, error)
// Partitions returns the sorted list of all partition IDs for the given topic.
Partitions(topic string) ([]int32, error)
// WritablePartitions returns the sorted list of all writable partition IDs for
// the given topic, where "writable" means "having a valid leader accepting
// writes".
WritablePartitions(topic string) ([]int32, error)
// Leader returns the broker object that is the leader of the current
// topic/partition, as determined by querying the cluster metadata.
Leader(topic string, partitionID int32) (*Broker, error)
// Replicas returns the set of all replica IDs for the given partition.
Replicas(topic string, partitionID int32) ([]int32, error)
// RefreshMetadata takes a list of topics and queries the cluster to refresh the
// available metadata for those topics. If no topics are provided, it will refresh
// metadata for all topics.
RefreshMetadata(topics ...string) error
// GetOffset queries the cluster to get the most recent available offset at the
// given time on the topic/partition combination. Time should be OffsetOldest for
// the earliest available offset, OffsetNewest for the offset of the message that
// will be produced next, or a time.
GetOffset(topic string, partitionID int32, time int64) (int64, error)
// Coordinator returns the coordinating broker for a consumer group. It will
// return a locally cached value if it's available. You can call
// RefreshCoordinator to update the cached value. This function only works on
// Kafka 0.8.2 and higher.
Coordinator(consumerGroup string) (*Broker, error)
// RefreshCoordinator retrieves the coordinator for a consumer group and stores it
// in local cache. This function only works on Kafka 0.8.2 and higher.
RefreshCoordinator(consumerGroup string) error
// Close shuts down all broker connections managed by this client. It is required
// to call this function before a client object passes out of scope, as it will
// otherwise leak memory. You must close any Producers or Consumers using a client
// before you close the client.
Close() error
// Closed returns true if the client has already had Close called on it
Closed() bool
}
const (
// OffsetNewest stands for the log head offset, i.e. the offset that will be
// assigned to the next message that will be produced to the partition. You
// can send this to a client's GetOffset method to get this offset, or when
// calling ConsumePartition to start consuming new messages.
OffsetNewest int64 = -1
// OffsetOldest stands for the oldest offset available on the broker for a
// partition. You can send this to a client's GetOffset method to get this
// offset, or when calling ConsumePartition to start consuming from the
// oldest offset that is still available on the broker.
OffsetOldest int64 = -2
)
type client struct {
conf *Config
closer, closed chan none // for shutting down background metadata updater
// the broker addresses given to us through the constructor are not guaranteed to be returned in
// the cluster metadata (I *think* it only returns brokers who are currently leading partitions?)
// so we store them separately
seedBrokers []*Broker
deadSeeds []*Broker
brokers map[int32]*Broker // maps broker ids to brokers
metadata map[string]map[int32]*PartitionMetadata // maps topics to partition ids to metadata
coordinators map[string]int32 // Maps consumer group names to coordinating broker IDs
// If the number of partitions is large, we can get some churn calling cachedPartitions,
// so the result is cached. It is important to update this value whenever metadata is changed
cachedPartitionsResults map[string][maxPartitionIndex][]int32
lock sync.RWMutex // protects access to the maps that hold cluster state.
}
// NewClient creates a new Client. It connects to one of the given broker addresses
// and uses that broker to automatically fetch metadata on the rest of the kafka cluster. If metadata cannot
// be retrieved from any of the given broker addresses, the client is not created.
func NewClient(addrs []string, conf *Config) (Client, error) {
Logger.Println("Initializing new client")
if conf == nil {
conf = NewConfig()
}
if err := conf.Validate(); err != nil {
return nil, err
}
if len(addrs) < 1 {
return nil, ConfigurationError("You must provide at least one broker address")
}
client := &client{
conf: conf,
closer: make(chan none),
closed: make(chan none),
brokers: make(map[int32]*Broker),
metadata: make(map[string]map[int32]*PartitionMetadata),
cachedPartitionsResults: make(map[string][maxPartitionIndex][]int32),
coordinators: make(map[string]int32),
}
random := rand.New(rand.NewSource(time.Now().UnixNano()))
for _, index := range random.Perm(len(addrs)) {
client.seedBrokers = append(client.seedBrokers, NewBroker(addrs[index]))
}
// do an initial fetch of all cluster metadata by specifing an empty list of topics
err := client.RefreshMetadata()
switch err {
case nil:
break
case ErrLeaderNotAvailable, ErrReplicaNotAvailable:
// indicates that maybe part of the cluster is down, but is not fatal to creating the client
Logger.Println(err)
default:
close(client.closed) // we haven't started the background updater yet, so we have to do this manually
_ = client.Close()
return nil, err
}
go withRecover(client.backgroundMetadataUpdater)
Logger.Println("Successfully initialized new client")
return client, nil
}
func (client *client) Config() *Config {
return client.conf
}
func (client *client) Close() error {
if client.Closed() {
// Chances are this is being called from a defer() and the error will go unobserved
// so we go ahead and log the event in this case.
Logger.Printf("Close() called on already closed client")
return ErrClosedClient
}
// shutdown and wait for the background thread before we take the lock, to avoid races
close(client.closer)
<-client.closed
client.lock.Lock()
defer client.lock.Unlock()
Logger.Println("Closing Client")
for _, broker := range client.brokers {
safeAsyncClose(broker)
}
for _, broker := range client.seedBrokers {
safeAsyncClose(broker)
}
client.brokers = nil
client.metadata = nil
return nil
}
func (client *client) Closed() bool {
return client.brokers == nil
}
func (client *client) Topics() ([]string, error) {
if client.Closed() {
return nil, ErrClosedClient
}
client.lock.RLock()
defer client.lock.RUnlock()
ret := make([]string, 0, len(client.metadata))
for topic := range client.metadata {
ret = append(ret, topic)
}
return ret, nil
}
func (client *client) Partitions(topic string) ([]int32, error) {
if client.Closed() {
return nil, ErrClosedClient
}
partitions := client.cachedPartitions(topic, allPartitions)
if len(partitions) == 0 {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
partitions = client.cachedPartitions(topic, allPartitions)
}
if partitions == nil {
return nil, ErrUnknownTopicOrPartition
}
return partitions, nil
}
func (client *client) WritablePartitions(topic string) ([]int32, error) {
if client.Closed() {
return nil, ErrClosedClient
}
partitions := client.cachedPartitions(topic, writablePartitions)
// len==0 catches when it's nil (no such topic) and the odd case when every single
// partition is undergoing leader election simultaneously. Callers have to be able to handle
// this function returning an empty slice (which is a valid return value) but catching it
// here the first time (note we *don't* catch it below where we return ErrUnknownTopicOrPartition) triggers
// a metadata refresh as a nicety so callers can just try again and don't have to manually
// trigger a refresh (otherwise they'd just keep getting a stale cached copy).
if len(partitions) == 0 {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
partitions = client.cachedPartitions(topic, writablePartitions)
}
if partitions == nil {
return nil, ErrUnknownTopicOrPartition
}
return partitions, nil
}
func (client *client) Replicas(topic string, partitionID int32) ([]int32, error) {
if client.Closed() {
return nil, ErrClosedClient
}
metadata := client.cachedMetadata(topic, partitionID)
if metadata == nil {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
metadata = client.cachedMetadata(topic, partitionID)
}
if metadata == nil {
return nil, ErrUnknownTopicOrPartition
}
if metadata.Err == ErrReplicaNotAvailable {
return nil, metadata.Err
}
return dupeAndSort(metadata.Replicas), nil
}
func (client *client) Leader(topic string, partitionID int32) (*Broker, error) {
if client.Closed() {
return nil, ErrClosedClient
}
leader, err := client.cachedLeader(topic, partitionID)
if leader == nil {
err := client.RefreshMetadata(topic)
if err != nil {
return nil, err
}
leader, err = client.cachedLeader(topic, partitionID)
}
return leader, err
}
func (client *client) RefreshMetadata(topics ...string) error {
if client.Closed() {
return ErrClosedClient
}
// Prior to 0.8.2, Kafka will throw exceptions on an empty topic and not return a proper
// error. This handles the case by returning an error instead of sending it
// off to Kafka. See: https://github.com/Shopify/sarama/pull/38#issuecomment-26362310
for _, topic := range topics {
if len(topic) == 0 {
return ErrInvalidTopic // this is the error that 0.8.2 and later correctly return
}
}
return client.tryRefreshMetadata(topics, client.conf.Metadata.Retry.Max)
}
func (client *client) GetOffset(topic string, partitionID int32, time int64) (int64, error) {
if client.Closed() {
return -1, ErrClosedClient
}
offset, err := client.getOffset(topic, partitionID, time)
if err != nil {
if err := client.RefreshMetadata(topic); err != nil {
return -1, err
}
return client.getOffset(topic, partitionID, time)
}
return offset, err
}
func (client *client) Coordinator(consumerGroup string) (*Broker, error) {
if client.Closed() {
return nil, ErrClosedClient
}
coordinator := client.cachedCoordinator(consumerGroup)
if coordinator == nil {
if err := client.RefreshCoordinator(consumerGroup); err != nil {
return nil, err
}
coordinator = client.cachedCoordinator(consumerGroup)
}
if coordinator == nil {
return nil, ErrConsumerCoordinatorNotAvailable
}
_ = coordinator.Open(client.conf)
return coordinator, nil
}
func (client *client) RefreshCoordinator(consumerGroup string) error {
if client.Closed() {
return ErrClosedClient
}
response, err := client.getConsumerMetadata(consumerGroup, client.conf.Metadata.Retry.Max)
if err != nil {
return err
}
client.lock.Lock()
defer client.lock.Unlock()
client.registerBroker(response.Coordinator)
client.coordinators[consumerGroup] = response.Coordinator.ID()
return nil
}
// private broker management helpers
// registerBroker makes sure a broker received by a Metadata or Coordinator request is registered
// in the brokers map. It returns the broker that is registered, which may be the provided broker,
// or a previously registered Broker instance. You must hold the write lock before calling this function.
func (client *client) registerBroker(broker *Broker) {
if client.brokers[broker.ID()] == nil {
client.brokers[broker.ID()] = broker
Logger.Printf("client/brokers registered new broker #%d at %s", broker.ID(), broker.Addr())
} else if broker.Addr() != client.brokers[broker.ID()].Addr() {
safeAsyncClose(client.brokers[broker.ID()])
client.brokers[broker.ID()] = broker
Logger.Printf("client/brokers replaced registered broker #%d with %s", broker.ID(), broker.Addr())
}
}
// deregisterBroker removes a broker from the seedsBroker list, and if it's
// not the seedbroker, removes it from brokers map completely.
func (client *client) deregisterBroker(broker *Broker) {
client.lock.Lock()
defer client.lock.Unlock()
if len(client.seedBrokers) > 0 && broker == client.seedBrokers[0] {
client.deadSeeds = append(client.deadSeeds, broker)
client.seedBrokers = client.seedBrokers[1:]
} else {
// we do this so that our loop in `tryRefreshMetadata` doesn't go on forever,
// but we really shouldn't have to; once that loop is made better this case can be
// removed, and the function generally can be renamed from `deregisterBroker` to
// `nextSeedBroker` or something
Logger.Printf("client/brokers deregistered broker #%d at %s", broker.ID(), broker.Addr())
delete(client.brokers, broker.ID())
}
}
func (client *client) resurrectDeadBrokers() {
client.lock.Lock()
defer client.lock.Unlock()
Logger.Printf("client/brokers resurrecting %d dead seed brokers", len(client.deadSeeds))
client.seedBrokers = append(client.seedBrokers, client.deadSeeds...)
client.deadSeeds = nil
}
func (client *client) any() *Broker {
client.lock.RLock()
defer client.lock.RUnlock()
if len(client.seedBrokers) > 0 {
_ = client.seedBrokers[0].Open(client.conf)
return client.seedBrokers[0]
}
// not guaranteed to be random *or* deterministic
for _, broker := range client.brokers {
_ = broker.Open(client.conf)
return broker
}
return nil
}
// private caching/lazy metadata helpers
type partitionType int
const (
allPartitions partitionType = iota
writablePartitions
// If you add any more types, update the partition cache in update()
// Ensure this is the last partition type value
maxPartitionIndex
)
func (client *client) cachedMetadata(topic string, partitionID int32) *PartitionMetadata {
client.lock.RLock()
defer client.lock.RUnlock()
partitions := client.metadata[topic]
if partitions != nil {
return partitions[partitionID]
}
return nil
}
func (client *client) cachedPartitions(topic string, partitionSet partitionType) []int32 {
client.lock.RLock()
defer client.lock.RUnlock()
partitions, exists := client.cachedPartitionsResults[topic]
if !exists {
return nil
}
return partitions[partitionSet]
}
func (client *client) setPartitionCache(topic string, partitionSet partitionType) []int32 {
partitions := client.metadata[topic]
if partitions == nil {
return nil
}
ret := make([]int32, 0, len(partitions))
for _, partition := range partitions {
if partitionSet == writablePartitions && partition.Err == ErrLeaderNotAvailable {
continue
}
ret = append(ret, partition.ID)
}
sort.Sort(int32Slice(ret))
return ret
}
func (client *client) cachedLeader(topic string, partitionID int32) (*Broker, error) {
client.lock.RLock()
defer client.lock.RUnlock()
partitions := client.metadata[topic]
if partitions != nil {
metadata, ok := partitions[partitionID]
if ok {
if metadata.Err == ErrLeaderNotAvailable {
return nil, ErrLeaderNotAvailable
}
b := client.brokers[metadata.Leader]
if b == nil {
return nil, ErrLeaderNotAvailable
}
_ = b.Open(client.conf)
return b, nil
}
}
return nil, ErrUnknownTopicOrPartition
}
func (client *client) getOffset(topic string, partitionID int32, time int64) (int64, error) {
broker, err := client.Leader(topic, partitionID)
if err != nil {
return -1, err
}
request := &OffsetRequest{}
request.AddBlock(topic, partitionID, time, 1)
response, err := broker.GetAvailableOffsets(request)
if err != nil {
_ = broker.Close()
return -1, err
}
block := response.GetBlock(topic, partitionID)
if block == nil {
_ = broker.Close()
return -1, ErrIncompleteResponse
}
if block.Err != ErrNoError {
return -1, block.Err
}
if len(block.Offsets) != 1 {
return -1, ErrOffsetOutOfRange
}
return block.Offsets[0], nil
}
// core metadata update logic
func (client *client) backgroundMetadataUpdater() {
defer close(client.closed)
if client.conf.Metadata.RefreshFrequency == time.Duration(0) {
return
}
ticker := time.NewTicker(client.conf.Metadata.RefreshFrequency)
defer ticker.Stop()
for {
select {
case <-ticker.C:
if err := client.RefreshMetadata(); err != nil {
Logger.Println("Client background metadata update:", err)
}
case <-client.closer:
return
}
}
}
func (client *client) tryRefreshMetadata(topics []string, attemptsRemaining int) error {
retry := func(err error) error {
if attemptsRemaining > 0 {
Logger.Printf("client/metadata retrying after %dms... (%d attempts remaining)\n", client.conf.Metadata.Retry.Backoff/time.Millisecond, attemptsRemaining)
time.Sleep(client.conf.Metadata.Retry.Backoff)
return client.tryRefreshMetadata(topics, attemptsRemaining-1)
}
return err
}
for broker := client.any(); broker != nil; broker = client.any() {
if len(topics) > 0 {
Logger.Printf("client/metadata fetching metadata for %v from broker %s\n", topics, broker.addr)
} else {
Logger.Printf("client/metadata fetching metadata for all topics from broker %s\n", broker.addr)
}
response, err := broker.GetMetadata(&MetadataRequest{Topics: topics})
switch err.(type) {
case nil:
// valid response, use it
if shouldRetry, err := client.updateMetadata(response); shouldRetry {
Logger.Println("client/metadata found some partitions to be leaderless")
return retry(err) // note: err can be nil
} else {
return err
}
case PacketEncodingError:
// didn't even send, return the error
return err
default:
// some other error, remove that broker and try again
Logger.Println("client/metadata got error from broker while fetching metadata:", err)
_ = broker.Close()
client.deregisterBroker(broker)
}
}
Logger.Println("client/metadata no available broker to send metadata request to")
client.resurrectDeadBrokers()
return retry(ErrOutOfBrokers)
}
// if no fatal error, returns a list of topics that need retrying due to ErrLeaderNotAvailable
func (client *client) updateMetadata(data *MetadataResponse) (retry bool, err error) {
client.lock.Lock()
defer client.lock.Unlock()
// For all the brokers we received:
// - if it is a new ID, save it
// - if it is an existing ID, but the address we have is stale, discard the old one and save it
// - otherwise ignore it, replacing our existing one would just bounce the connection
for _, broker := range data.Brokers {
client.registerBroker(broker)
}
for _, topic := range data.Topics {
delete(client.metadata, topic.Name)
delete(client.cachedPartitionsResults, topic.Name)
switch topic.Err {
case ErrNoError:
break
case ErrInvalidTopic: // don't retry, don't store partial results
err = topic.Err
continue
case ErrUnknownTopicOrPartition: // retry, do not store partial partition results
err = topic.Err
retry = true
continue
case ErrLeaderNotAvailable: // retry, but store partial partition results
retry = true
break
default: // don't retry, don't store partial results
Logger.Printf("Unexpected topic-level metadata error: %s", topic.Err)
err = topic.Err
continue
}
client.metadata[topic.Name] = make(map[int32]*PartitionMetadata, len(topic.Partitions))
for _, partition := range topic.Partitions {
client.metadata[topic.Name][partition.ID] = partition
if partition.Err == ErrLeaderNotAvailable {
retry = true
}
}
var partitionCache [maxPartitionIndex][]int32
partitionCache[allPartitions] = client.setPartitionCache(topic.Name, allPartitions)
partitionCache[writablePartitions] = client.setPartitionCache(topic.Name, writablePartitions)
client.cachedPartitionsResults[topic.Name] = partitionCache
}
return
}
func (client *client) cachedCoordinator(consumerGroup string) *Broker {
client.lock.RLock()
defer client.lock.RUnlock()
if coordinatorID, ok := client.coordinators[consumerGroup]; ok {
return client.brokers[coordinatorID]
}
return nil
}
func (client *client) getConsumerMetadata(consumerGroup string, attemptsRemaining int) (*ConsumerMetadataResponse, error) {
retry := func(err error) (*ConsumerMetadataResponse, error) {
if attemptsRemaining > 0 {
Logger.Printf("client/coordinator retrying after %dms... (%d attempts remaining)\n", client.conf.Metadata.Retry.Backoff/time.Millisecond, attemptsRemaining)
time.Sleep(client.conf.Metadata.Retry.Backoff)
return client.getConsumerMetadata(consumerGroup, attemptsRemaining-1)
}
return nil, err
}
for broker := client.any(); broker != nil; broker = client.any() {
Logger.Printf("client/coordinator requesting coordinator for consumergoup %s from %s\n", consumerGroup, broker.Addr())
request := new(ConsumerMetadataRequest)
request.ConsumerGroup = consumerGroup
response, err := broker.GetConsumerMetadata(request)
if err != nil {
Logger.Printf("client/coordinator request to broker %s failed: %s\n", broker.Addr(), err)
switch err.(type) {
case PacketEncodingError:
return nil, err
default:
_ = broker.Close()
client.deregisterBroker(broker)
continue
}
}
switch response.Err {
case ErrNoError:
Logger.Printf("client/coordinator coordinator for consumergoup %s is #%d (%s)\n", consumerGroup, response.Coordinator.ID(), response.Coordinator.Addr())
return response, nil
case ErrConsumerCoordinatorNotAvailable:
Logger.Printf("client/coordinator coordinator for consumer group %s is not available\n", consumerGroup)
// This is very ugly, but this scenario will only happen once per cluster.
// The __consumer_offsets topic only has to be created one time.
// The number of partitions not configurable, but partition 0 should always exist.
if _, err := client.Leader("__consumer_offsets", 0); err != nil {
Logger.Printf("client/coordinator the __consumer_offsets topic is not initialized completely yet. Waiting 2 seconds...\n")
time.Sleep(2 * time.Second)
}
return retry(ErrConsumerCoordinatorNotAvailable)
default:
return nil, response.Err
}
}
Logger.Println("client/coordinator no available broker to send consumer metadata request to")
client.resurrectDeadBrokers()
return retry(ErrOutOfBrokers)
}

View File

@ -0,0 +1,344 @@
package sarama
import (
"crypto/tls"
"time"
)
// Config is used to pass multiple configuration options to Sarama's constructors.
type Config struct {
// Net is the namespace for network-level properties used by the Broker, and
// shared by the Client/Producer/Consumer.
Net struct {
// How many outstanding requests a connection is allowed to have before
// sending on it blocks (default 5).
MaxOpenRequests int
// All three of the below configurations are similar to the
// `socket.timeout.ms` setting in JVM kafka. All of them default
// to 30 seconds.
DialTimeout time.Duration // How long to wait for the initial connection.
ReadTimeout time.Duration // How long to wait for a response.
WriteTimeout time.Duration // How long to wait for a transmit.
// NOTE: these config values have no compatibility guarantees; they may
// change when Kafka releases its official TLS support in version 0.9.
TLS struct {
// Whether or not to use TLS when connecting to the broker
// (defaults to false).
Enable bool
// The TLS configuration to use for secure connections if
// enabled (defaults to nil).
Config *tls.Config
}
// KeepAlive specifies the keep-alive period for an active network connection.
// If zero, keep-alives are disabled. (default is 0: disabled).
KeepAlive time.Duration
}
// Metadata is the namespace for metadata management properties used by the
// Client, and shared by the Producer/Consumer.
Metadata struct {
Retry struct {
// The total number of times to retry a metadata request when the
// cluster is in the middle of a leader election (default 3).
Max int
// How long to wait for leader election to occur before retrying
// (default 250ms). Similar to the JVM's `retry.backoff.ms`.
Backoff time.Duration
}
// How frequently to refresh the cluster metadata in the background.
// Defaults to 10 minutes. Set to 0 to disable. Similar to
// `topic.metadata.refresh.interval.ms` in the JVM version.
RefreshFrequency time.Duration
}
// Producer is the namespace for configuration related to producing messages,
// used by the Producer.
Producer struct {
// The maximum permitted size of a message (defaults to 1000000). Should be
// set equal to or smaller than the broker's `message.max.bytes`.
MaxMessageBytes int
// The level of acknowledgement reliability needed from the broker (defaults
// to WaitForLocal). Equivalent to the `request.required.acks` setting of the
// JVM producer.
RequiredAcks RequiredAcks
// The maximum duration the broker will wait the receipt of the number of
// RequiredAcks (defaults to 10 seconds). This is only relevant when
// RequiredAcks is set to WaitForAll or a number > 1. Only supports
// millisecond resolution, nanoseconds will be truncated. Equivalent to
// the JVM producer's `request.timeout.ms` setting.
Timeout time.Duration
// The type of compression to use on messages (defaults to no compression).
// Similar to `compression.codec` setting of the JVM producer.
Compression CompressionCodec
// Generates partitioners for choosing the partition to send messages to
// (defaults to hashing the message key). Similar to the `partitioner.class`
// setting for the JVM producer.
Partitioner PartitionerConstructor
// Return specifies what channels will be populated. If they are set to true,
// you must read from the respective channels to prevent deadlock.
Return struct {
// If enabled, successfully delivered messages will be returned on the
// Successes channel (default disabled).
Successes bool
// If enabled, messages that failed to deliver will be returned on the
// Errors channel, including error (default enabled).
Errors bool
}
// The following config options control how often messages are batched up and
// sent to the broker. By default, messages are sent as fast as possible, and
// all messages received while the current batch is in-flight are placed
// into the subsequent batch.
Flush struct {
// The best-effort number of bytes needed to trigger a flush. Use the
// global sarama.MaxRequestSize to set a hard upper limit.
Bytes int
// The best-effort number of messages needed to trigger a flush. Use
// `MaxMessages` to set a hard upper limit.
Messages int
// The best-effort frequency of flushes. Equivalent to
// `queue.buffering.max.ms` setting of JVM producer.
Frequency time.Duration
// The maximum number of messages the producer will send in a single
// broker request. Defaults to 0 for unlimited. Similar to
// `queue.buffering.max.messages` in the JVM producer.
MaxMessages int
}
Retry struct {
// The total number of times to retry sending a message (default 3).
// Similar to the `message.send.max.retries` setting of the JVM producer.
Max int
// How long to wait for the cluster to settle between retries
// (default 100ms). Similar to the `retry.backoff.ms` setting of the
// JVM producer.
Backoff time.Duration
}
}
// Consumer is the namespace for configuration related to consuming messages,
// used by the Consumer.
Consumer struct {
Retry struct {
// How long to wait after a failing to read from a partition before
// trying again (default 2s).
Backoff time.Duration
}
// Fetch is the namespace for controlling how many bytes are retrieved by any
// given request.
Fetch struct {
// The minimum number of message bytes to fetch in a request - the broker
// will wait until at least this many are available. The default is 1,
// as 0 causes the consumer to spin when no messages are available.
// Equivalent to the JVM's `fetch.min.bytes`.
Min int32
// The default number of message bytes to fetch from the broker in each
// request (default 32768). This should be larger than the majority of
// your messages, or else the consumer will spend a lot of time
// negotiating sizes and not actually consuming. Similar to the JVM's
// `fetch.message.max.bytes`.
Default int32
// The maximum number of message bytes to fetch from the broker in a
// single request. Messages larger than this will return
// ErrMessageTooLarge and will not be consumable, so you must be sure
// this is at least as large as your largest message. Defaults to 0
// (no limit). Similar to the JVM's `fetch.message.max.bytes`. The
// global `sarama.MaxResponseSize` still applies.
Max int32
}
// The maximum amount of time the broker will wait for Consumer.Fetch.Min
// bytes to become available before it returns fewer than that anyways. The
// default is 250ms, since 0 causes the consumer to spin when no events are
// available. 100-500ms is a reasonable range for most cases. Kafka only
// supports precision up to milliseconds; nanoseconds will be truncated.
// Equivalent to the JVM's `fetch.wait.max.ms`.
MaxWaitTime time.Duration
// The maximum amount of time the consumer expects a message takes to process
// for the user. If writing to the Messages channel takes longer than this,
// that partition will stop fetching more messages until it can proceed again.
// Note that, since the Messages channel is buffered, the actual grace time is
// (MaxProcessingTime * ChanneBufferSize). Defaults to 100ms.
MaxProcessingTime time.Duration
// Return specifies what channels will be populated. If they are set to true,
// you must read from them to prevent deadlock.
Return struct {
// If enabled, any errors that occured while consuming are returned on
// the Errors channel (default disabled).
Errors bool
}
// Offsets specifies configuration for how and when to commit consumed
// offsets. This currently requires the manual use of an OffsetManager
// but will eventually be automated.
Offsets struct {
// How frequently to commit updated offsets. Defaults to 1s.
CommitInterval time.Duration
// The initial offset to use if no offset was previously committed.
// Should be OffsetNewest or OffsetOldest. Defaults to OffsetNewest.
Initial int64
}
}
// A user-provided string sent with every request to the brokers for logging,
// debugging, and auditing purposes. Defaults to "sarama", but you should
// probably set it to something specific to your application.
ClientID string
// The number of events to buffer in internal and external channels. This
// permits the producer and consumer to continue processing some messages
// in the background while user code is working, greatly improving throughput.
// Defaults to 256.
ChannelBufferSize int
}
// NewConfig returns a new configuration instance with sane defaults.
func NewConfig() *Config {
c := &Config{}
c.Net.MaxOpenRequests = 5
c.Net.DialTimeout = 30 * time.Second
c.Net.ReadTimeout = 30 * time.Second
c.Net.WriteTimeout = 30 * time.Second
c.Metadata.Retry.Max = 3
c.Metadata.Retry.Backoff = 250 * time.Millisecond
c.Metadata.RefreshFrequency = 10 * time.Minute
c.Producer.MaxMessageBytes = 1000000
c.Producer.RequiredAcks = WaitForLocal
c.Producer.Timeout = 10 * time.Second
c.Producer.Partitioner = NewHashPartitioner
c.Producer.Retry.Max = 3
c.Producer.Retry.Backoff = 100 * time.Millisecond
c.Producer.Return.Errors = true
c.Consumer.Fetch.Min = 1
c.Consumer.Fetch.Default = 32768
c.Consumer.Retry.Backoff = 2 * time.Second
c.Consumer.MaxWaitTime = 250 * time.Millisecond
c.Consumer.MaxProcessingTime = 100 * time.Millisecond
c.Consumer.Return.Errors = false
c.Consumer.Offsets.CommitInterval = 1 * time.Second
c.Consumer.Offsets.Initial = OffsetNewest
c.ChannelBufferSize = 256
return c
}
// Validate checks a Config instance. It will return a
// ConfigurationError if the specified values don't make sense.
func (c *Config) Validate() error {
// some configuration values should be warned on but not fail completely, do those first
if c.Net.TLS.Enable == false && c.Net.TLS.Config != nil {
Logger.Println("Net.TLS is disabled but a non-nil configuration was provided.")
}
if c.Producer.RequiredAcks > 1 {
Logger.Println("Producer.RequiredAcks > 1 is deprecated and will raise an exception with kafka >= 0.8.2.0.")
}
if c.Producer.MaxMessageBytes >= int(MaxRequestSize) {
Logger.Println("Producer.MaxMessageBytes is larger than MaxRequestSize; it will be ignored.")
}
if c.Producer.Flush.Bytes >= int(MaxRequestSize) {
Logger.Println("Producer.Flush.Bytes is larger than MaxRequestSize; it will be ignored.")
}
if c.Producer.Timeout%time.Millisecond != 0 {
Logger.Println("Producer.Timeout only supports millisecond resolution; nanoseconds will be truncated.")
}
if c.Consumer.MaxWaitTime < 100*time.Millisecond {
Logger.Println("Consumer.MaxWaitTime is very low, which can cause high CPU and network usage. See documentation for details.")
}
if c.Consumer.MaxWaitTime%time.Millisecond != 0 {
Logger.Println("Consumer.MaxWaitTime only supports millisecond precision; nanoseconds will be truncated.")
}
if c.ClientID == "sarama" {
Logger.Println("ClientID is the default of 'sarama', you should consider setting it to something application-specific.")
}
// validate Net values
switch {
case c.Net.MaxOpenRequests <= 0:
return ConfigurationError("Net.MaxOpenRequests must be > 0")
case c.Net.DialTimeout <= 0:
return ConfigurationError("Net.DialTimeout must be > 0")
case c.Net.ReadTimeout <= 0:
return ConfigurationError("Net.ReadTimeout must be > 0")
case c.Net.WriteTimeout <= 0:
return ConfigurationError("Net.WriteTimeout must be > 0")
case c.Net.KeepAlive < 0:
return ConfigurationError("Net.KeepAlive must be >= 0")
}
// validate the Metadata values
switch {
case c.Metadata.Retry.Max < 0:
return ConfigurationError("Metadata.Retry.Max must be >= 0")
case c.Metadata.Retry.Backoff < 0:
return ConfigurationError("Metadata.Retry.Backoff must be >= 0")
case c.Metadata.RefreshFrequency < 0:
return ConfigurationError("Metadata.RefreshFrequency must be >= 0")
}
// validate the Producer values
switch {
case c.Producer.MaxMessageBytes <= 0:
return ConfigurationError("Producer.MaxMessageBytes must be > 0")
case c.Producer.RequiredAcks < -1:
return ConfigurationError("Producer.RequiredAcks must be >= -1")
case c.Producer.Timeout <= 0:
return ConfigurationError("Producer.Timeout must be > 0")
case c.Producer.Partitioner == nil:
return ConfigurationError("Producer.Partitioner must not be nil")
case c.Producer.Flush.Bytes < 0:
return ConfigurationError("Producer.Flush.Bytes must be >= 0")
case c.Producer.Flush.Messages < 0:
return ConfigurationError("Producer.Flush.Messages must be >= 0")
case c.Producer.Flush.Frequency < 0:
return ConfigurationError("Producer.Flush.Frequency must be >= 0")
case c.Producer.Flush.MaxMessages < 0:
return ConfigurationError("Producer.Flush.MaxMessages must be >= 0")
case c.Producer.Flush.MaxMessages > 0 && c.Producer.Flush.MaxMessages < c.Producer.Flush.Messages:
return ConfigurationError("Producer.Flush.MaxMessages must be >= Producer.Flush.Messages when set")
case c.Producer.Retry.Max < 0:
return ConfigurationError("Producer.Retry.Max must be >= 0")
case c.Producer.Retry.Backoff < 0:
return ConfigurationError("Producer.Retry.Backoff must be >= 0")
}
// validate the Consumer values
switch {
case c.Consumer.Fetch.Min <= 0:
return ConfigurationError("Consumer.Fetch.Min must be > 0")
case c.Consumer.Fetch.Default <= 0:
return ConfigurationError("Consumer.Fetch.Default must be > 0")
case c.Consumer.Fetch.Max < 0:
return ConfigurationError("Consumer.Fetch.Max must be >= 0")
case c.Consumer.MaxWaitTime < 1*time.Millisecond:
return ConfigurationError("Consumer.MaxWaitTime must be >= 1ms")
case c.Consumer.MaxProcessingTime <= 0:
return ConfigurationError("Consumer.MaxProcessingTime must be > 0")
case c.Consumer.Retry.Backoff < 0:
return ConfigurationError("Consumer.Retry.Backoff must be >= 0")
case c.Consumer.Offsets.CommitInterval <= 0:
return ConfigurationError("Consumer.Offsets.CommitInterval must be > 0")
case c.Consumer.Offsets.Initial != OffsetOldest && c.Consumer.Offsets.Initial != OffsetNewest:
return ConfigurationError("Consumer.Offsets.Initial must be OffsetOldest or OffsetNewest")
}
// validate misc shared values
switch {
case c.ChannelBufferSize < 0:
return ConfigurationError("ChannelBufferSize must be >= 0")
}
return nil
}

View File

@ -0,0 +1,690 @@
package sarama
import (
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
)
// ConsumerMessage encapsulates a Kafka message returned by the consumer.
type ConsumerMessage struct {
Key, Value []byte
Topic string
Partition int32
Offset int64
}
// ConsumerError is what is provided to the user when an error occurs.
// It wraps an error and includes the topic and partition.
type ConsumerError struct {
Topic string
Partition int32
Err error
}
func (ce ConsumerError) Error() string {
return fmt.Sprintf("kafka: error while consuming %s/%d: %s", ce.Topic, ce.Partition, ce.Err)
}
// ConsumerErrors is a type that wraps a batch of errors and implements the Error interface.
// It can be returned from the PartitionConsumer's Close methods to avoid the need to manually drain errors
// when stopping.
type ConsumerErrors []*ConsumerError
func (ce ConsumerErrors) Error() string {
return fmt.Sprintf("kafka: %d errors while consuming", len(ce))
}
// Consumer manages PartitionConsumers which process Kafka messages from brokers. You MUST call Close()
// on a consumer to avoid leaks, it will not be garbage-collected automatically when it passes out of
// scope.
//
// Sarama's Consumer type does not currently support automatic consumer group rebalancing and offset tracking,
// however the https://github.com/wvanbergen/kafka library builds on Sarama to add this support. We plan
// to properly integrate this functionality at a later date.
type Consumer interface {
// Topics returns the set of available topics as retrieved from the cluster
// metadata. This method is the same as Client.Topics(), and is provided for
// convenience.
Topics() ([]string, error)
// Partitions returns the sorted list of all partition IDs for the given topic.
// This method is the same as Client.Partitions(), and is provided for convenience.
Partitions(topic string) ([]int32, error)
// ConsumePartition creates a PartitionConsumer on the given topic/partition with
// the given offset. It will return an error if this Consumer is already consuming
// on the given topic/partition. Offset can be a literal offset, or OffsetNewest
// or OffsetOldest
ConsumePartition(topic string, partition int32, offset int64) (PartitionConsumer, error)
// Close shuts down the consumer. It must be called after all child
// PartitionConsumers have already been closed.
Close() error
}
type consumer struct {
client Client
conf *Config
ownClient bool
lock sync.Mutex
children map[string]map[int32]*partitionConsumer
brokerConsumers map[*Broker]*brokerConsumer
}
// NewConsumer creates a new consumer using the given broker addresses and configuration.
func NewConsumer(addrs []string, config *Config) (Consumer, error) {
client, err := NewClient(addrs, config)
if err != nil {
return nil, err
}
c, err := NewConsumerFromClient(client)
if err != nil {
return nil, err
}
c.(*consumer).ownClient = true
return c, nil
}
// NewConsumerFromClient creates a new consumer using the given client. It is still
// necessary to call Close() on the underlying client when shutting down this consumer.
func NewConsumerFromClient(client Client) (Consumer, error) {
// Check that we are not dealing with a closed Client before processing any other arguments
if client.Closed() {
return nil, ErrClosedClient
}
c := &consumer{
client: client,
conf: client.Config(),
children: make(map[string]map[int32]*partitionConsumer),
brokerConsumers: make(map[*Broker]*brokerConsumer),
}
return c, nil
}
func (c *consumer) Close() error {
if c.ownClient {
return c.client.Close()
}
return nil
}
func (c *consumer) Topics() ([]string, error) {
return c.client.Topics()
}
func (c *consumer) Partitions(topic string) ([]int32, error) {
return c.client.Partitions(topic)
}
func (c *consumer) ConsumePartition(topic string, partition int32, offset int64) (PartitionConsumer, error) {
child := &partitionConsumer{
consumer: c,
conf: c.conf,
topic: topic,
partition: partition,
messages: make(chan *ConsumerMessage, c.conf.ChannelBufferSize),
errors: make(chan *ConsumerError, c.conf.ChannelBufferSize),
feeder: make(chan *FetchResponse, 1),
trigger: make(chan none, 1),
dying: make(chan none),
fetchSize: c.conf.Consumer.Fetch.Default,
}
if err := child.chooseStartingOffset(offset); err != nil {
return nil, err
}
var leader *Broker
var err error
if leader, err = c.client.Leader(child.topic, child.partition); err != nil {
return nil, err
}
if err := c.addChild(child); err != nil {
return nil, err
}
go withRecover(child.dispatcher)
go withRecover(child.responseFeeder)
child.broker = c.refBrokerConsumer(leader)
child.broker.input <- child
return child, nil
}
func (c *consumer) addChild(child *partitionConsumer) error {
c.lock.Lock()
defer c.lock.Unlock()
topicChildren := c.children[child.topic]
if topicChildren == nil {
topicChildren = make(map[int32]*partitionConsumer)
c.children[child.topic] = topicChildren
}
if topicChildren[child.partition] != nil {
return ConfigurationError("That topic/partition is already being consumed")
}
topicChildren[child.partition] = child
return nil
}
func (c *consumer) removeChild(child *partitionConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
delete(c.children[child.topic], child.partition)
}
func (c *consumer) refBrokerConsumer(broker *Broker) *brokerConsumer {
c.lock.Lock()
defer c.lock.Unlock()
bc := c.brokerConsumers[broker]
if bc == nil {
bc = c.newBrokerConsumer(broker)
c.brokerConsumers[broker] = bc
}
bc.refs++
return bc
}
func (c *consumer) unrefBrokerConsumer(brokerWorker *brokerConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
brokerWorker.refs--
if brokerWorker.refs == 0 {
close(brokerWorker.input)
if c.brokerConsumers[brokerWorker.broker] == brokerWorker {
delete(c.brokerConsumers, brokerWorker.broker)
}
}
}
func (c *consumer) abandonBrokerConsumer(brokerWorker *brokerConsumer) {
c.lock.Lock()
defer c.lock.Unlock()
delete(c.brokerConsumers, brokerWorker.broker)
}
// PartitionConsumer
// PartitionConsumer processes Kafka messages from a given topic and partition. You MUST call Close()
// or AsyncClose() on a PartitionConsumer to avoid leaks, it will not be garbage-collected automatically
// when it passes out of scope.
//
// The simplest way of using a PartitionConsumer is to loop over its Messages channel using a for/range
// loop. The PartitionConsumer will only stop itself in one case: when the offset being consumed is reported
// as out of range by the brokers. In this case you should decide what you want to do (try a different offset,
// notify a human, etc) and handle it appropriately. For all other error cases, it will just keep retrying.
// By default, it logs these errors to sarama.Logger; if you want to be notified directly of all errors, set
// your config's Consumer.Return.Errors to true and read from the Errors channel, using a select statement
// or a separate goroutine. Check out the Consumer examples to see implementations of these different approaches.
type PartitionConsumer interface {
// AsyncClose initiates a shutdown of the PartitionConsumer. This method will
// return immediately, after which you should wait until the 'messages' and
// 'errors' channel are drained. It is required to call this function, or
// Close before a consumer object passes out of scope, as it will otherwise
// leak memory. You must call this before calling Close on the underlying client.
AsyncClose()
// Close stops the PartitionConsumer from fetching messages. It is required to
// call this function (or AsyncClose) before a consumer object passes out of
// scope, as it will otherwise leak memory. You must call this before calling
// Close on the underlying client.
Close() error
// Messages returns the read channel for the messages that are returned by
// the broker.
Messages() <-chan *ConsumerMessage
// Errors returns a read channel of errors that occured during consuming, if
// enabled. By default, errors are logged and not returned over this channel.
// If you want to implement any custom error handling, set your config's
// Consumer.Return.Errors setting to true, and read from this channel.
Errors() <-chan *ConsumerError
// HighWaterMarkOffset returns the high water mark offset of the partition,
// i.e. the offset that will be used for the next message that will be produced.
// You can use this to determine how far behind the processing is.
HighWaterMarkOffset() int64
}
type partitionConsumer struct {
consumer *consumer
conf *Config
topic string
partition int32
broker *brokerConsumer
messages chan *ConsumerMessage
errors chan *ConsumerError
feeder chan *FetchResponse
trigger, dying chan none
responseResult error
fetchSize int32
offset int64
highWaterMarkOffset int64
}
var errTimedOut = errors.New("timed out feeding messages to the user") // not user-facing
func (child *partitionConsumer) sendError(err error) {
cErr := &ConsumerError{
Topic: child.topic,
Partition: child.partition,
Err: err,
}
if child.conf.Consumer.Return.Errors {
child.errors <- cErr
} else {
Logger.Println(cErr)
}
}
func (child *partitionConsumer) dispatcher() {
for _ = range child.trigger {
select {
case <-child.dying:
close(child.trigger)
case <-time.After(child.conf.Consumer.Retry.Backoff):
if child.broker != nil {
child.consumer.unrefBrokerConsumer(child.broker)
child.broker = nil
}
Logger.Printf("consumer/%s/%d finding new broker\n", child.topic, child.partition)
if err := child.dispatch(); err != nil {
child.sendError(err)
child.trigger <- none{}
}
}
}
if child.broker != nil {
child.consumer.unrefBrokerConsumer(child.broker)
}
child.consumer.removeChild(child)
close(child.feeder)
}
func (child *partitionConsumer) dispatch() error {
if err := child.consumer.client.RefreshMetadata(child.topic); err != nil {
return err
}
var leader *Broker
var err error
if leader, err = child.consumer.client.Leader(child.topic, child.partition); err != nil {
return err
}
child.broker = child.consumer.refBrokerConsumer(leader)
child.broker.input <- child
return nil
}
func (child *partitionConsumer) chooseStartingOffset(offset int64) error {
newestOffset, err := child.consumer.client.GetOffset(child.topic, child.partition, OffsetNewest)
if err != nil {
return err
}
oldestOffset, err := child.consumer.client.GetOffset(child.topic, child.partition, OffsetOldest)
if err != nil {
return err
}
switch {
case offset == OffsetNewest:
child.offset = newestOffset
case offset == OffsetOldest:
child.offset = oldestOffset
case offset >= oldestOffset && offset <= newestOffset:
child.offset = offset
default:
return ErrOffsetOutOfRange
}
return nil
}
func (child *partitionConsumer) Messages() <-chan *ConsumerMessage {
return child.messages
}
func (child *partitionConsumer) Errors() <-chan *ConsumerError {
return child.errors
}
func (child *partitionConsumer) AsyncClose() {
// this triggers whatever broker owns this child to abandon it and close its trigger channel, which causes
// the dispatcher to exit its loop, which removes it from the consumer then closes its 'messages' and
// 'errors' channel (alternatively, if the child is already at the dispatcher for some reason, that will
// also just close itself)
close(child.dying)
}
func (child *partitionConsumer) Close() error {
child.AsyncClose()
go withRecover(func() {
for _ = range child.messages {
// drain
}
})
var errors ConsumerErrors
for err := range child.errors {
errors = append(errors, err)
}
if len(errors) > 0 {
return errors
}
return nil
}
func (child *partitionConsumer) HighWaterMarkOffset() int64 {
return atomic.LoadInt64(&child.highWaterMarkOffset)
}
func (child *partitionConsumer) responseFeeder() {
var msgs []*ConsumerMessage
feederLoop:
for response := range child.feeder {
msgs, child.responseResult = child.parseResponse(response)
for i, msg := range msgs {
select {
case child.messages <- msg:
case <-time.After(child.conf.Consumer.MaxProcessingTime):
child.responseResult = errTimedOut
child.broker.acks.Done()
for _, msg = range msgs[i:] {
child.messages <- msg
}
child.broker.input <- child
continue feederLoop
}
}
child.broker.acks.Done()
}
close(child.messages)
close(child.errors)
}
func (child *partitionConsumer) parseResponse(response *FetchResponse) ([]*ConsumerMessage, error) {
block := response.GetBlock(child.topic, child.partition)
if block == nil {
return nil, ErrIncompleteResponse
}
if block.Err != ErrNoError {
return nil, block.Err
}
if len(block.MsgSet.Messages) == 0 {
// We got no messages. If we got a trailing one then we need to ask for more data.
// Otherwise we just poll again and wait for one to be produced...
if block.MsgSet.PartialTrailingMessage {
if child.conf.Consumer.Fetch.Max > 0 && child.fetchSize == child.conf.Consumer.Fetch.Max {
// we can't ask for more data, we've hit the configured limit
child.sendError(ErrMessageTooLarge)
child.offset++ // skip this one so we can keep processing future messages
} else {
child.fetchSize *= 2
if child.conf.Consumer.Fetch.Max > 0 && child.fetchSize > child.conf.Consumer.Fetch.Max {
child.fetchSize = child.conf.Consumer.Fetch.Max
}
}
}
return nil, nil
}
// we got messages, reset our fetch size in case it was increased for a previous request
child.fetchSize = child.conf.Consumer.Fetch.Default
atomic.StoreInt64(&child.highWaterMarkOffset, block.HighWaterMarkOffset)
incomplete := false
prelude := true
var messages []*ConsumerMessage
for _, msgBlock := range block.MsgSet.Messages {
for _, msg := range msgBlock.Messages() {
if prelude && msg.Offset < child.offset {
continue
}
prelude = false
if msg.Offset >= child.offset {
messages = append(messages, &ConsumerMessage{
Topic: child.topic,
Partition: child.partition,
Key: msg.Msg.Key,
Value: msg.Msg.Value,
Offset: msg.Offset,
})
child.offset = msg.Offset + 1
} else {
incomplete = true
}
}
}
if incomplete || len(messages) == 0 {
return nil, ErrIncompleteResponse
}
return messages, nil
}
// brokerConsumer
type brokerConsumer struct {
consumer *consumer
broker *Broker
input chan *partitionConsumer
newSubscriptions chan []*partitionConsumer
wait chan none
subscriptions map[*partitionConsumer]none
acks sync.WaitGroup
refs int
}
func (c *consumer) newBrokerConsumer(broker *Broker) *brokerConsumer {
bc := &brokerConsumer{
consumer: c,
broker: broker,
input: make(chan *partitionConsumer),
newSubscriptions: make(chan []*partitionConsumer),
wait: make(chan none),
subscriptions: make(map[*partitionConsumer]none),
refs: 0,
}
go withRecover(bc.subscriptionManager)
go withRecover(bc.subscriptionConsumer)
return bc
}
func (bc *brokerConsumer) subscriptionManager() {
var buffer []*partitionConsumer
// The subscriptionManager constantly accepts new subscriptions on `input` (even when the main subscriptionConsumer
// goroutine is in the middle of a network request) and batches it up. The main worker goroutine picks
// up a batch of new subscriptions between every network request by reading from `newSubscriptions`, so we give
// it nil if no new subscriptions are available. We also write to `wait` only when new subscriptions is available,
// so the main goroutine can block waiting for work if it has none.
for {
if len(buffer) > 0 {
select {
case event, ok := <-bc.input:
if !ok {
goto done
}
buffer = append(buffer, event)
case bc.newSubscriptions <- buffer:
buffer = nil
case bc.wait <- none{}:
}
} else {
select {
case event, ok := <-bc.input:
if !ok {
goto done
}
buffer = append(buffer, event)
case bc.newSubscriptions <- nil:
}
}
}
done:
close(bc.wait)
if len(buffer) > 0 {
bc.newSubscriptions <- buffer
}
close(bc.newSubscriptions)
}
func (bc *brokerConsumer) subscriptionConsumer() {
<-bc.wait // wait for our first piece of work
// the subscriptionConsumer ensures we will get nil right away if no new subscriptions is available
for newSubscriptions := range bc.newSubscriptions {
bc.updateSubscriptions(newSubscriptions)
if len(bc.subscriptions) == 0 {
// We're about to be shut down or we're about to receive more subscriptions.
// Either way, the signal just hasn't propagated to our goroutine yet.
<-bc.wait
continue
}
response, err := bc.fetchNewMessages()
if err != nil {
Logger.Printf("consumer/broker/%d disconnecting due to error processing FetchRequest: %s\n", bc.broker.ID(), err)
bc.abort(err)
return
}
bc.acks.Add(len(bc.subscriptions))
for child := range bc.subscriptions {
child.feeder <- response
}
bc.acks.Wait()
bc.handleResponses()
}
}
func (bc *brokerConsumer) updateSubscriptions(newSubscriptions []*partitionConsumer) {
for _, child := range newSubscriptions {
bc.subscriptions[child] = none{}
Logger.Printf("consumer/broker/%d added subscription to %s/%d\n", bc.broker.ID(), child.topic, child.partition)
}
for child := range bc.subscriptions {
select {
case <-child.dying:
Logger.Printf("consumer/broker/%d closed dead subscription to %s/%d\n", bc.broker.ID(), child.topic, child.partition)
close(child.trigger)
delete(bc.subscriptions, child)
default:
break
}
}
}
func (bc *brokerConsumer) handleResponses() {
// handles the response codes left for us by our subscriptions, and abandons ones that have been closed
for child := range bc.subscriptions {
result := child.responseResult
child.responseResult = nil
switch result {
case nil:
break
case errTimedOut:
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because consuming was taking too long\n",
bc.broker.ID(), child.topic, child.partition)
delete(bc.subscriptions, child)
case ErrOffsetOutOfRange:
// there's no point in retrying this it will just fail the same way again
// shut it down and force the user to choose what to do
child.sendError(result)
Logger.Printf("consumer/%s/%d shutting down because %s\n", child.topic, child.partition, result)
close(child.trigger)
delete(bc.subscriptions, child)
case ErrUnknownTopicOrPartition, ErrNotLeaderForPartition, ErrLeaderNotAvailable:
// not an error, but does need redispatching
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because %s\n",
bc.broker.ID(), child.topic, child.partition, result)
child.trigger <- none{}
delete(bc.subscriptions, child)
default:
// dunno, tell the user and try redispatching
child.sendError(result)
Logger.Printf("consumer/broker/%d abandoned subscription to %s/%d because %s\n",
bc.broker.ID(), child.topic, child.partition, result)
child.trigger <- none{}
delete(bc.subscriptions, child)
}
}
}
func (bc *brokerConsumer) abort(err error) {
bc.consumer.abandonBrokerConsumer(bc)
_ = bc.broker.Close() // we don't care about the error this might return, we already have one
for child := range bc.subscriptions {
child.sendError(err)
child.trigger <- none{}
}
for newSubscription := range bc.newSubscriptions {
for _, child := range newSubscription {
child.sendError(err)
child.trigger <- none{}
}
}
}
func (bc *brokerConsumer) fetchNewMessages() (*FetchResponse, error) {
request := &FetchRequest{
MinBytes: bc.consumer.conf.Consumer.Fetch.Min,
MaxWaitTime: int32(bc.consumer.conf.Consumer.MaxWaitTime / time.Millisecond),
}
for child := range bc.subscriptions {
request.AddBlock(child.topic, child.partition, child.offset, child.fetchSize)
}
return bc.broker.Fetch(request)
}

View File

@ -0,0 +1,22 @@
package sarama
type ConsumerMetadataRequest struct {
ConsumerGroup string
}
func (r *ConsumerMetadataRequest) encode(pe packetEncoder) error {
return pe.putString(r.ConsumerGroup)
}
func (r *ConsumerMetadataRequest) decode(pd packetDecoder) (err error) {
r.ConsumerGroup, err = pd.getString()
return err
}
func (r *ConsumerMetadataRequest) key() int16 {
return 10
}
func (r *ConsumerMetadataRequest) version() int16 {
return 0
}

View File

@ -0,0 +1,73 @@
package sarama
import (
"net"
"strconv"
)
type ConsumerMetadataResponse struct {
Err KError
Coordinator *Broker
CoordinatorID int32 // deprecated: use Coordinator.ID()
CoordinatorHost string // deprecated: use Coordinator.Addr()
CoordinatorPort int32 // deprecated: use Coordinator.Addr()
}
func (r *ConsumerMetadataResponse) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(tmp)
coordinator := new(Broker)
if err := coordinator.decode(pd); err != nil {
return err
}
if coordinator.addr == ":0" {
return nil
}
r.Coordinator = coordinator
// this can all go away in 2.0, but we have to fill in deprecated fields to maintain
// backwards compatibility
host, portstr, err := net.SplitHostPort(r.Coordinator.Addr())
if err != nil {
return err
}
port, err := strconv.ParseInt(portstr, 10, 32)
if err != nil {
return err
}
r.CoordinatorID = r.Coordinator.ID()
r.CoordinatorHost = host
r.CoordinatorPort = int32(port)
return nil
}
func (r *ConsumerMetadataResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
if r.Coordinator != nil {
host, portstr, err := net.SplitHostPort(r.Coordinator.Addr())
if err != nil {
return err
}
port, err := strconv.ParseInt(portstr, 10, 32)
if err != nil {
return err
}
pe.putInt32(r.Coordinator.ID())
if err := pe.putString(host); err != nil {
return err
}
pe.putInt32(int32(port))
return nil
}
pe.putInt32(r.CoordinatorID)
if err := pe.putString(r.CoordinatorHost); err != nil {
return err
}
pe.putInt32(r.CoordinatorPort)
return nil
}

View File

@ -0,0 +1,36 @@
package sarama
import (
"encoding/binary"
"github.com/klauspost/crc32"
)
// crc32Field implements the pushEncoder and pushDecoder interfaces for calculating CRC32s.
type crc32Field struct {
startOffset int
}
func (c *crc32Field) saveOffset(in int) {
c.startOffset = in
}
func (c *crc32Field) reserveLength() int {
return 4
}
func (c *crc32Field) run(curOffset int, buf []byte) error {
crc := crc32.ChecksumIEEE(buf[c.startOffset+4 : curOffset])
binary.BigEndian.PutUint32(buf[c.startOffset:], crc)
return nil
}
func (c *crc32Field) check(curOffset int, buf []byte) error {
crc := crc32.ChecksumIEEE(buf[c.startOffset+4 : curOffset])
if crc != binary.BigEndian.Uint32(buf[c.startOffset:]) {
return PacketDecodingError{"CRC didn't match"}
}
return nil
}

View File

@ -0,0 +1,26 @@
package sarama
type DescribeGroupsRequest struct {
Groups []string
}
func (r *DescribeGroupsRequest) encode(pe packetEncoder) error {
return pe.putStringArray(r.Groups)
}
func (r *DescribeGroupsRequest) decode(pd packetDecoder) (err error) {
r.Groups, err = pd.getStringArray()
return
}
func (r *DescribeGroupsRequest) key() int16 {
return 15
}
func (r *DescribeGroupsRequest) version() int16 {
return 0
}
func (r *DescribeGroupsRequest) AddGroup(group string) {
r.Groups = append(r.Groups, group)
}

View File

@ -0,0 +1,162 @@
package sarama
type DescribeGroupsResponse struct {
Groups []*GroupDescription
}
func (r *DescribeGroupsResponse) encode(pe packetEncoder) error {
if err := pe.putArrayLength(len(r.Groups)); err != nil {
return err
}
for _, groupDescription := range r.Groups {
if err := groupDescription.encode(pe); err != nil {
return err
}
}
return nil
}
func (r *DescribeGroupsResponse) decode(pd packetDecoder) (err error) {
n, err := pd.getArrayLength()
if err != nil {
return err
}
r.Groups = make([]*GroupDescription, n)
for i := 0; i < n; i++ {
r.Groups[i] = new(GroupDescription)
if err := r.Groups[i].decode(pd); err != nil {
return err
}
}
return nil
}
type GroupDescription struct {
Err KError
GroupId string
State string
ProtocolType string
Protocol string
Members map[string]*GroupMemberDescription
}
func (gd *GroupDescription) encode(pe packetEncoder) error {
pe.putInt16(int16(gd.Err))
if err := pe.putString(gd.GroupId); err != nil {
return err
}
if err := pe.putString(gd.State); err != nil {
return err
}
if err := pe.putString(gd.ProtocolType); err != nil {
return err
}
if err := pe.putString(gd.Protocol); err != nil {
return err
}
if err := pe.putArrayLength(len(gd.Members)); err != nil {
return err
}
for memberId, groupMemberDescription := range gd.Members {
if err := pe.putString(memberId); err != nil {
return err
}
if err := groupMemberDescription.encode(pe); err != nil {
return err
}
}
return nil
}
func (gd *GroupDescription) decode(pd packetDecoder) (err error) {
if kerr, err := pd.getInt16(); err != nil {
return err
} else {
gd.Err = KError(kerr)
}
if gd.GroupId, err = pd.getString(); err != nil {
return
}
if gd.State, err = pd.getString(); err != nil {
return
}
if gd.ProtocolType, err = pd.getString(); err != nil {
return
}
if gd.Protocol, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
gd.Members = make(map[string]*GroupMemberDescription)
for i := 0; i < n; i++ {
memberId, err := pd.getString()
if err != nil {
return err
}
gd.Members[memberId] = new(GroupMemberDescription)
if err := gd.Members[memberId].decode(pd); err != nil {
return err
}
}
return nil
}
type GroupMemberDescription struct {
ClientId string
ClientHost string
MemberMetadata []byte
MemberAssignment []byte
}
func (gmd *GroupMemberDescription) encode(pe packetEncoder) error {
if err := pe.putString(gmd.ClientId); err != nil {
return err
}
if err := pe.putString(gmd.ClientHost); err != nil {
return err
}
if err := pe.putBytes(gmd.MemberMetadata); err != nil {
return err
}
if err := pe.putBytes(gmd.MemberAssignment); err != nil {
return err
}
return nil
}
func (gmd *GroupMemberDescription) decode(pd packetDecoder) (err error) {
if gmd.ClientId, err = pd.getString(); err != nil {
return
}
if gmd.ClientHost, err = pd.getString(); err != nil {
return
}
if gmd.MemberMetadata, err = pd.getBytes(); err != nil {
return
}
if gmd.MemberAssignment, err = pd.getBytes(); err != nil {
return
}
return nil
}

View File

@ -0,0 +1,62 @@
package sarama
import "fmt"
// Encoder is the interface that wraps the basic Encode method.
// Anything implementing Encoder can be turned into bytes using Kafka's encoding rules.
type encoder interface {
encode(pe packetEncoder) error
}
// Encode takes an Encoder and turns it into bytes.
func encode(e encoder) ([]byte, error) {
if e == nil {
return nil, nil
}
var prepEnc prepEncoder
var realEnc realEncoder
err := e.encode(&prepEnc)
if err != nil {
return nil, err
}
if prepEnc.length < 0 || prepEnc.length > int(MaxRequestSize) {
return nil, PacketEncodingError{fmt.Sprintf("invalid request size (%d)", prepEnc.length)}
}
realEnc.raw = make([]byte, prepEnc.length)
err = e.encode(&realEnc)
if err != nil {
return nil, err
}
return realEnc.raw, nil
}
// Decoder is the interface that wraps the basic Decode method.
// Anything implementing Decoder can be extracted from bytes using Kafka's encoding rules.
type decoder interface {
decode(pd packetDecoder) error
}
// Decode takes bytes and a Decoder and fills the fields of the decoder from the bytes,
// interpreted using Kafka's encoding rules.
func decode(buf []byte, in decoder) error {
if buf == nil {
return nil
}
helper := realDecoder{raw: buf}
err := in.decode(&helper)
if err != nil {
return err
}
if helper.off != len(buf) {
return PacketDecodingError{"invalid length"}
}
return nil
}

View File

@ -0,0 +1,179 @@
package sarama
import (
"errors"
"fmt"
)
// ErrOutOfBrokers is the error returned when the client has run out of brokers to talk to because all of them errored
// or otherwise failed to respond.
var ErrOutOfBrokers = errors.New("kafka: client has run out of available brokers to talk to (Is your cluster reachable?)")
// ErrClosedClient is the error returned when a method is called on a client that has been closed.
var ErrClosedClient = errors.New("kafka: tried to use a client that was closed")
// ErrIncompleteResponse is the error returned when the server returns a syntactically valid response, but it does
// not contain the expected information.
var ErrIncompleteResponse = errors.New("kafka: response did not contain all the expected topic/partition blocks")
// ErrInvalidPartition is the error returned when a partitioner returns an invalid partition index
// (meaning one outside of the range [0...numPartitions-1]).
var ErrInvalidPartition = errors.New("kafka: partitioner returned an invalid partition index")
// ErrAlreadyConnected is the error returned when calling Open() on a Broker that is already connected or connecting.
var ErrAlreadyConnected = errors.New("kafka: broker connection already initiated")
// ErrNotConnected is the error returned when trying to send or call Close() on a Broker that is not connected.
var ErrNotConnected = errors.New("kafka: broker not connected")
// ErrInsufficientData is returned when decoding and the packet is truncated. This can be expected
// when requesting messages, since as an optimization the server is allowed to return a partial message at the end
// of the message set.
var ErrInsufficientData = errors.New("kafka: insufficient data to decode packet, more bytes expected")
// ErrShuttingDown is returned when a producer receives a message during shutdown.
var ErrShuttingDown = errors.New("kafka: message received by producer in process of shutting down")
// ErrMessageTooLarge is returned when the next message to consume is larger than the configured Consumer.Fetch.Max
var ErrMessageTooLarge = errors.New("kafka: message is larger than Consumer.Fetch.Max")
// PacketEncodingError is returned from a failure while encoding a Kafka packet. This can happen, for example,
// if you try to encode a string over 2^15 characters in length, since Kafka's encoding rules do not permit that.
type PacketEncodingError struct {
Info string
}
func (err PacketEncodingError) Error() string {
return fmt.Sprintf("kafka: error encoding packet: %s", err.Info)
}
// PacketDecodingError is returned when there was an error (other than truncated data) decoding the Kafka broker's response.
// This can be a bad CRC or length field, or any other invalid value.
type PacketDecodingError struct {
Info string
}
func (err PacketDecodingError) Error() string {
return fmt.Sprintf("kafka: error decoding packet: %s", err.Info)
}
// ConfigurationError is the type of error returned from a constructor (e.g. NewClient, or NewConsumer)
// when the specified configuration is invalid.
type ConfigurationError string
func (err ConfigurationError) Error() string {
return "kafka: invalid configuration (" + string(err) + ")"
}
// KError is the type of error that can be returned directly by the Kafka broker.
// See https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-ErrorCodes
type KError int16
// Numeric error codes returned by the Kafka server.
const (
ErrNoError KError = 0
ErrUnknown KError = -1
ErrOffsetOutOfRange KError = 1
ErrInvalidMessage KError = 2
ErrUnknownTopicOrPartition KError = 3
ErrInvalidMessageSize KError = 4
ErrLeaderNotAvailable KError = 5
ErrNotLeaderForPartition KError = 6
ErrRequestTimedOut KError = 7
ErrBrokerNotAvailable KError = 8
ErrReplicaNotAvailable KError = 9
ErrMessageSizeTooLarge KError = 10
ErrStaleControllerEpochCode KError = 11
ErrOffsetMetadataTooLarge KError = 12
ErrOffsetsLoadInProgress KError = 14
ErrConsumerCoordinatorNotAvailable KError = 15
ErrNotCoordinatorForConsumer KError = 16
ErrInvalidTopic KError = 17
ErrMessageSetSizeTooLarge KError = 18
ErrNotEnoughReplicas KError = 19
ErrNotEnoughReplicasAfterAppend KError = 20
ErrInvalidRequiredAcks KError = 21
ErrIllegalGeneration KError = 22
ErrInconsistentGroupProtocol KError = 23
ErrInvalidGroupId KError = 24
ErrUnknownMemberId KError = 25
ErrInvalidSessionTimeout KError = 26
ErrRebalanceInProgress KError = 27
ErrInvalidCommitOffsetSize KError = 28
ErrTopicAuthorizationFailed KError = 29
ErrGroupAuthorizationFailed KError = 30
ErrClusterAuthorizationFailed KError = 31
)
func (err KError) Error() string {
// Error messages stolen/adapted from
// https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
switch err {
case ErrNoError:
return "kafka server: Not an error, why are you printing me?"
case ErrUnknown:
return "kafka server: Unexpected (unknown?) server error."
case ErrOffsetOutOfRange:
return "kafka server: The requested offset is outside the range of offsets maintained by the server for the given topic/partition."
case ErrInvalidMessage:
return "kafka server: Message contents does not match its CRC."
case ErrUnknownTopicOrPartition:
return "kafka server: Request was for a topic or partition that does not exist on this broker."
case ErrInvalidMessageSize:
return "kafka server: The message has a negative size."
case ErrLeaderNotAvailable:
return "kafka server: In the middle of a leadership election, there is currently no leader for this partition and hence it is unavailable for writes."
case ErrNotLeaderForPartition:
return "kafka server: Tried to send a message to a replica that is not the leader for some partition. Your metadata is out of date."
case ErrRequestTimedOut:
return "kafka server: Request exceeded the user-specified time limit in the request."
case ErrBrokerNotAvailable:
return "kafka server: Broker not available. Not a client facing error, we should never receive this!!!"
case ErrReplicaNotAvailable:
return "kafka server: Replica infomation not available, one or more brokers are down."
case ErrMessageSizeTooLarge:
return "kafka server: Message was too large, server rejected it to avoid allocation error."
case ErrStaleControllerEpochCode:
return "kafka server: StaleControllerEpochCode (internal error code for broker-to-broker communication)."
case ErrOffsetMetadataTooLarge:
return "kafka server: Specified a string larger than the configured maximum for offset metadata."
case ErrOffsetsLoadInProgress:
return "kafka server: The broker is still loading offsets after a leader change for that offset's topic partition."
case ErrConsumerCoordinatorNotAvailable:
return "kafka server: Offset's topic has not yet been created."
case ErrNotCoordinatorForConsumer:
return "kafka server: Request was for a consumer group that is not coordinated by this broker."
case ErrInvalidTopic:
return "kafka server: The request attempted to perform an operation on an invalid topic."
case ErrMessageSetSizeTooLarge:
return "kafka server: The request included message batch larger than the configured segment size on the server."
case ErrNotEnoughReplicas:
return "kafka server: Messages are rejected since there are fewer in-sync replicas than required."
case ErrNotEnoughReplicasAfterAppend:
return "kafka server: Messages are written to the log, but to fewer in-sync replicas than required."
case ErrInvalidRequiredAcks:
return "kafka server: The number of required acks is invalid (should be either -1, 0, or 1)."
case ErrIllegalGeneration:
return "kafka server: The provided generation id is not the current generation."
case ErrInconsistentGroupProtocol:
return "kafka server: The provider group protocol type is incompatible with the other members."
case ErrInvalidGroupId:
return "kafka server: The provided group id was empty."
case ErrUnknownMemberId:
return "kafka server: The provided member is not known in the current generation."
case ErrInvalidSessionTimeout:
return "kafka server: The provided session timeout is outside the allowed range."
case ErrRebalanceInProgress:
return "kafka server: A rebalance for the group is in progress. Please re-join the group."
case ErrInvalidCommitOffsetSize:
return "kafka server: The provided commit metadata was too large."
case ErrTopicAuthorizationFailed:
return "kafka server: The client is not authorized to access this topic."
case ErrGroupAuthorizationFailed:
return "kafka server: The client is not authorized to access this group."
case ErrClusterAuthorizationFailed:
return "kafka server: The client is not authorized to send this request type."
}
return fmt.Sprintf("Unknown error, how did this happen? Error code = %d", err)
}

View File

@ -0,0 +1,9 @@
# Sarama examples
This folder contains example applications to demonstrate the use of Sarama. For code snippet examples on how to use the different types in Sarama, see [Sarams's API documentation on godoc.org](https://godoc.org/github.com/Shopify/sarama)
In these examples, we use `github.com/Shopify/sarama` as import path. We do this to ensure all the examples are up to date with the latest changes in Sarama. For your own applications, you may want to use `gopkg.in/Shopify/sarama.v1` to lock into a stable API version.
#### HTTP server
[http_server](./http_server) is a simple HTTP server uses both the sync producer to produce data as part of the request handling cycle, as well as the async producer to maintain an access log. It also uses the [mocks subpackage](https://godoc.org/github.com/Shopify/sarama/mocks) to test both.

View File

@ -0,0 +1,2 @@
http_server
http_server.test

View File

@ -0,0 +1,7 @@
# HTTP server example
This HTTP server example shows you how to use the AsyncProducer and SyncProducer, and how to test them using mocks. The server simply sends the data of the HTTP request's query string to Kafka, and send a 200 result if that succeeds. For every request, it will send an access log entry to Kafka as well in the background.
If you need to know whether a message was successfully sent to the Kafka cluster before you can send your HTTP response, using the `SyncProducer` is probably the simplest way to achieve this. If you don't care, e.g. for the access log, using the `AsyncProducer` will let you fire and forget. You can send the HTTP response, while the message is being produced in the background.
One important thing to note is that both the `SyncProducer` and `AsyncProducer` are **thread-safe**. Go's `http.Server` handles requests concurrently in different goroutines, but you can use a single producer safely. This will actually achieve efficiency gains as the producer will be able to batch messages from concurrent requests together.

View File

@ -0,0 +1,246 @@
package main
import (
"github.com/Shopify/sarama"
"crypto/tls"
"crypto/x509"
"encoding/json"
"flag"
"fmt"
"io/ioutil"
"log"
"net/http"
"os"
"strings"
"time"
)
var (
addr = flag.String("addr", ":8080", "The address to bind to")
brokers = flag.String("brokers", os.Getenv("KAFKA_PEERS"), "The Kafka brokers to connect to, as a comma separated list")
verbose = flag.Bool("verbose", false, "Turn on Sarama logging")
certFile = flag.String("certificate", "", "The optional certificate file for client authentication")
keyFile = flag.String("key", "", "The optional key file for client authentication")
caFile = flag.String("ca", "", "The optional certificate authority file for TLS client authentication")
verifySsl = flag.Bool("verify", false, "Optional verify ssl certificates chain")
)
func main() {
flag.Parse()
if *verbose {
sarama.Logger = log.New(os.Stdout, "[sarama] ", log.LstdFlags)
}
if *brokers == "" {
flag.PrintDefaults()
os.Exit(1)
}
brokerList := strings.Split(*brokers, ",")
log.Printf("Kafka brokers: %s", strings.Join(brokerList, ", "))
server := &Server{
DataCollector: newDataCollector(brokerList),
AccessLogProducer: newAccessLogProducer(brokerList),
}
defer func() {
if err := server.Close(); err != nil {
log.Println("Failed to close server", err)
}
}()
log.Fatal(server.Run(*addr))
}
func createTlsConfiguration() (t *tls.Config) {
if *certFile != "" && *keyFile != "" && *caFile != "" {
cert, err := tls.LoadX509KeyPair(*certFile, *keyFile)
if err != nil {
log.Fatal(err)
}
caCert, err := ioutil.ReadFile(*caFile)
if err != nil {
log.Fatal(err)
}
caCertPool := x509.NewCertPool()
caCertPool.AppendCertsFromPEM(caCert)
t = &tls.Config{
Certificates: []tls.Certificate{cert},
RootCAs: caCertPool,
InsecureSkipVerify: *verifySsl,
}
}
// will be nil by default if nothing is provided
return t
}
type Server struct {
DataCollector sarama.SyncProducer
AccessLogProducer sarama.AsyncProducer
}
func (s *Server) Close() error {
if err := s.DataCollector.Close(); err != nil {
log.Println("Failed to shut down data collector cleanly", err)
}
if err := s.AccessLogProducer.Close(); err != nil {
log.Println("Failed to shut down access log producer cleanly", err)
}
return nil
}
func (s *Server) Handler() http.Handler {
return s.withAccessLog(s.collectQueryStringData())
}
func (s *Server) Run(addr string) error {
httpServer := &http.Server{
Addr: addr,
Handler: s.Handler(),
}
log.Printf("Listening for requests on %s...\n", addr)
return httpServer.ListenAndServe()
}
func (s *Server) collectQueryStringData() http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/" {
http.NotFound(w, r)
return
}
// We are not setting a message key, which means that all messages will
// be distributed randomly over the different partitions.
partition, offset, err := s.DataCollector.SendMessage(&sarama.ProducerMessage{
Topic: "important",
Value: sarama.StringEncoder(r.URL.RawQuery),
})
if err != nil {
w.WriteHeader(http.StatusInternalServerError)
fmt.Fprintf(w, "Failed to store your data:, %s", err)
} else {
// The tuple (topic, partition, offset) can be used as a unique identifier
// for a message in a Kafka cluster.
fmt.Fprintf(w, "Your data is stored with unique identifier important/%d/%d", partition, offset)
}
})
}
type accessLogEntry struct {
Method string `json:"method"`
Host string `json:"host"`
Path string `json:"path"`
IP string `json:"ip"`
ResponseTime float64 `json:"response_time"`
encoded []byte
err error
}
func (ale *accessLogEntry) ensureEncoded() {
if ale.encoded == nil && ale.err == nil {
ale.encoded, ale.err = json.Marshal(ale)
}
}
func (ale *accessLogEntry) Length() int {
ale.ensureEncoded()
return len(ale.encoded)
}
func (ale *accessLogEntry) Encode() ([]byte, error) {
ale.ensureEncoded()
return ale.encoded, ale.err
}
func (s *Server) withAccessLog(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
started := time.Now()
next.ServeHTTP(w, r)
entry := &accessLogEntry{
Method: r.Method,
Host: r.Host,
Path: r.RequestURI,
IP: r.RemoteAddr,
ResponseTime: float64(time.Since(started)) / float64(time.Second),
}
// We will use the client's IP address as key. This will cause
// all the access log entries of the same IP address to end up
// on the same partition.
s.AccessLogProducer.Input() <- &sarama.ProducerMessage{
Topic: "access_log",
Key: sarama.StringEncoder(r.RemoteAddr),
Value: entry,
}
})
}
func newDataCollector(brokerList []string) sarama.SyncProducer {
// For the data collector, we are looking for strong consistency semantics.
// Because we don't change the flush settings, sarama will try to produce messages
// as fast as possible to keep latency low.
config := sarama.NewConfig()
config.Producer.RequiredAcks = sarama.WaitForAll // Wait for all in-sync replicas to ack the message
config.Producer.Retry.Max = 10 // Retry up to 10 times to produce the message
tlsConfig := createTlsConfiguration()
if tlsConfig != nil {
config.Net.TLS.Config = tlsConfig
config.Net.TLS.Enable = true
}
// On the broker side, you may want to change the following settings to get
// stronger consistency guarantees:
// - For your broker, set `unclean.leader.election.enable` to false
// - For the topic, you could increase `min.insync.replicas`.
producer, err := sarama.NewSyncProducer(brokerList, config)
if err != nil {
log.Fatalln("Failed to start Sarama producer:", err)
}
return producer
}
func newAccessLogProducer(brokerList []string) sarama.AsyncProducer {
// For the access log, we are looking for AP semantics, with high throughput.
// By creating batches of compressed messages, we reduce network I/O at a cost of more latency.
config := sarama.NewConfig()
tlsConfig := createTlsConfiguration()
if tlsConfig != nil {
config.Net.TLS.Enable = true
config.Net.TLS.Config = tlsConfig
}
config.Producer.RequiredAcks = sarama.WaitForLocal // Only wait for the leader to ack
config.Producer.Compression = sarama.CompressionSnappy // Compress messages
config.Producer.Flush.Frequency = 500 * time.Millisecond // Flush batches every 500ms
producer, err := sarama.NewAsyncProducer(brokerList, config)
if err != nil {
log.Fatalln("Failed to start Sarama producer:", err)
}
// We will just log to STDOUT if we're not able to produce messages.
// Note: messages will only be returned here after all retry attempts are exhausted.
go func() {
for err := range producer.Errors() {
log.Println("Failed to write access log entry:", err)
}
}()
return producer
}

View File

@ -0,0 +1,123 @@
package sarama
type fetchRequestBlock struct {
fetchOffset int64
maxBytes int32
}
func (f *fetchRequestBlock) encode(pe packetEncoder) error {
pe.putInt64(f.fetchOffset)
pe.putInt32(f.maxBytes)
return nil
}
func (f *fetchRequestBlock) decode(pd packetDecoder) (err error) {
if f.fetchOffset, err = pd.getInt64(); err != nil {
return err
}
if f.maxBytes, err = pd.getInt32(); err != nil {
return err
}
return nil
}
type FetchRequest struct {
MaxWaitTime int32
MinBytes int32
blocks map[string]map[int32]*fetchRequestBlock
}
func (f *FetchRequest) encode(pe packetEncoder) (err error) {
pe.putInt32(-1) // replica ID is always -1 for clients
pe.putInt32(f.MaxWaitTime)
pe.putInt32(f.MinBytes)
err = pe.putArrayLength(len(f.blocks))
if err != nil {
return err
}
for topic, blocks := range f.blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(blocks))
if err != nil {
return err
}
for partition, block := range blocks {
pe.putInt32(partition)
err = block.encode(pe)
if err != nil {
return err
}
}
}
return nil
}
func (f *FetchRequest) decode(pd packetDecoder) (err error) {
if _, err = pd.getInt32(); err != nil {
return err
}
if f.MaxWaitTime, err = pd.getInt32(); err != nil {
return err
}
if f.MinBytes, err = pd.getInt32(); err != nil {
return err
}
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
f.blocks = make(map[string]map[int32]*fetchRequestBlock)
for i := 0; i < topicCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
f.blocks[topic] = make(map[int32]*fetchRequestBlock)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
fetchBlock := &fetchRequestBlock{}
if err = fetchBlock.decode(pd); err != nil {
return nil
}
f.blocks[topic][partition] = fetchBlock
}
}
return nil
}
func (f *FetchRequest) key() int16 {
return 1
}
func (f *FetchRequest) version() int16 {
return 0
}
func (f *FetchRequest) AddBlock(topic string, partitionID int32, fetchOffset int64, maxBytes int32) {
if f.blocks == nil {
f.blocks = make(map[string]map[int32]*fetchRequestBlock)
}
if f.blocks[topic] == nil {
f.blocks[topic] = make(map[int32]*fetchRequestBlock)
}
tmp := new(fetchRequestBlock)
tmp.maxBytes = maxBytes
tmp.fetchOffset = fetchOffset
f.blocks[topic][partitionID] = tmp
}

View File

@ -0,0 +1,173 @@
package sarama
type FetchResponseBlock struct {
Err KError
HighWaterMarkOffset int64
MsgSet MessageSet
}
func (pr *FetchResponseBlock) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
pr.Err = KError(tmp)
pr.HighWaterMarkOffset, err = pd.getInt64()
if err != nil {
return err
}
msgSetSize, err := pd.getInt32()
if err != nil {
return err
}
msgSetDecoder, err := pd.getSubset(int(msgSetSize))
if err != nil {
return err
}
err = (&pr.MsgSet).decode(msgSetDecoder)
return err
}
type FetchResponse struct {
Blocks map[string]map[int32]*FetchResponseBlock
}
func (pr *FetchResponseBlock) encode(pe packetEncoder) (err error) {
pe.putInt16(int16(pr.Err))
pe.putInt64(pr.HighWaterMarkOffset)
pe.push(&lengthField{})
err = pr.MsgSet.encode(pe)
if err != nil {
return err
}
return pe.pop()
}
func (fr *FetchResponse) decode(pd packetDecoder) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil {
return err
}
fr.Blocks = make(map[string]map[int32]*FetchResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
fr.Blocks[name] = make(map[int32]*FetchResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(FetchResponseBlock)
err = block.decode(pd)
if err != nil {
return err
}
fr.Blocks[name][id] = block
}
}
return nil
}
func (fr *FetchResponse) encode(pe packetEncoder) (err error) {
err = pe.putArrayLength(len(fr.Blocks))
if err != nil {
return err
}
for topic, partitions := range fr.Blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
for id, block := range partitions {
pe.putInt32(id)
err = block.encode(pe)
if err != nil {
return err
}
}
}
return nil
}
func (fr *FetchResponse) GetBlock(topic string, partition int32) *FetchResponseBlock {
if fr.Blocks == nil {
return nil
}
if fr.Blocks[topic] == nil {
return nil
}
return fr.Blocks[topic][partition]
}
func (fr *FetchResponse) AddError(topic string, partition int32, err KError) {
if fr.Blocks == nil {
fr.Blocks = make(map[string]map[int32]*FetchResponseBlock)
}
partitions, ok := fr.Blocks[topic]
if !ok {
partitions = make(map[int32]*FetchResponseBlock)
fr.Blocks[topic] = partitions
}
frb, ok := partitions[partition]
if !ok {
frb = new(FetchResponseBlock)
partitions[partition] = frb
}
frb.Err = err
}
func (fr *FetchResponse) AddMessage(topic string, partition int32, key, value Encoder, offset int64) {
if fr.Blocks == nil {
fr.Blocks = make(map[string]map[int32]*FetchResponseBlock)
}
partitions, ok := fr.Blocks[topic]
if !ok {
partitions = make(map[int32]*FetchResponseBlock)
fr.Blocks[topic] = partitions
}
frb, ok := partitions[partition]
if !ok {
frb = new(FetchResponseBlock)
partitions[partition] = frb
}
var kb []byte
var vb []byte
if key != nil {
kb, _ = key.Encode()
}
if value != nil {
vb, _ = value.Encode()
}
msg := &Message{Key: kb, Value: vb}
msgBlock := &MessageBlock{Msg: msg, Offset: offset}
frb.MsgSet.Messages = append(frb.MsgSet.Messages, msgBlock)
}

View File

@ -0,0 +1,43 @@
package sarama
type HeartbeatRequest struct {
GroupId string
GenerationId int32
MemberId string
}
func (r *HeartbeatRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
pe.putInt32(r.GenerationId)
if err := pe.putString(r.MemberId); err != nil {
return err
}
return nil
}
func (r *HeartbeatRequest) decode(pd packetDecoder) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.GenerationId, err = pd.getInt32(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
return nil
}
func (r *HeartbeatRequest) key() int16 {
return 12
}
func (r *HeartbeatRequest) version() int16 {
return 0
}

View File

@ -0,0 +1,20 @@
package sarama
type HeartbeatResponse struct {
Err KError
}
func (r *HeartbeatResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
return nil
}
func (r *HeartbeatResponse) decode(pd packetDecoder) error {
if kerr, err := pd.getInt16(); err != nil {
return err
} else {
r.Err = KError(kerr)
}
return nil
}

View File

@ -0,0 +1,94 @@
package sarama
type JoinGroupRequest struct {
GroupId string
SessionTimeout int32
MemberId string
ProtocolType string
GroupProtocols map[string][]byte
}
func (r *JoinGroupRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
pe.putInt32(r.SessionTimeout)
if err := pe.putString(r.MemberId); err != nil {
return err
}
if err := pe.putString(r.ProtocolType); err != nil {
return err
}
if err := pe.putArrayLength(len(r.GroupProtocols)); err != nil {
return err
}
for name, metadata := range r.GroupProtocols {
if err := pe.putString(name); err != nil {
return err
}
if err := pe.putBytes(metadata); err != nil {
return err
}
}
return nil
}
func (r *JoinGroupRequest) decode(pd packetDecoder) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.SessionTimeout, err = pd.getInt32(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
if r.ProtocolType, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.GroupProtocols = make(map[string][]byte)
for i := 0; i < n; i++ {
name, err := pd.getString()
if err != nil {
return err
}
metadata, err := pd.getBytes()
if err != nil {
return err
}
r.GroupProtocols[name] = metadata
}
return nil
}
func (r *JoinGroupRequest) key() int16 {
return 11
}
func (r *JoinGroupRequest) version() int16 {
return 0
}
func (r *JoinGroupRequest) AddGroupProtocol(name string, metadata []byte) {
if r.GroupProtocols == nil {
r.GroupProtocols = make(map[string][]byte)
}
r.GroupProtocols[name] = metadata
}

View File

@ -0,0 +1,90 @@
package sarama
type JoinGroupResponse struct {
Err KError
GenerationId int32
GroupProtocol string
LeaderId string
MemberId string
Members map[string][]byte
}
func (r *JoinGroupResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
pe.putInt32(r.GenerationId)
if err := pe.putString(r.GroupProtocol); err != nil {
return err
}
if err := pe.putString(r.LeaderId); err != nil {
return err
}
if err := pe.putString(r.MemberId); err != nil {
return err
}
if err := pe.putArrayLength(len(r.Members)); err != nil {
return err
}
for memberId, memberMetadata := range r.Members {
if err := pe.putString(memberId); err != nil {
return err
}
if err := pe.putBytes(memberMetadata); err != nil {
return err
}
}
return nil
}
func (r *JoinGroupResponse) decode(pd packetDecoder) (err error) {
if kerr, err := pd.getInt16(); err != nil {
return err
} else {
r.Err = KError(kerr)
}
if r.GenerationId, err = pd.getInt32(); err != nil {
return
}
if r.GroupProtocol, err = pd.getString(); err != nil {
return
}
if r.LeaderId, err = pd.getString(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.Members = make(map[string][]byte)
for i := 0; i < n; i++ {
memberId, err := pd.getString()
if err != nil {
return err
}
memberMetadata, err := pd.getBytes()
if err != nil {
return err
}
r.Members[memberId] = memberMetadata
}
return nil
}

View File

@ -0,0 +1,36 @@
package sarama
type LeaveGroupRequest struct {
GroupId string
MemberId string
}
func (r *LeaveGroupRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
if err := pe.putString(r.MemberId); err != nil {
return err
}
return nil
}
func (r *LeaveGroupRequest) decode(pd packetDecoder) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
return nil
}
func (r *LeaveGroupRequest) key() int16 {
return 13
}
func (r *LeaveGroupRequest) version() int16 {
return 0
}

View File

@ -0,0 +1,20 @@
package sarama
type LeaveGroupResponse struct {
Err KError
}
func (r *LeaveGroupResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
return nil
}
func (r *LeaveGroupResponse) decode(pd packetDecoder) (err error) {
if kerr, err := pd.getInt16(); err != nil {
return err
} else {
r.Err = KError(kerr)
}
return nil
}

View File

@ -0,0 +1,29 @@
package sarama
import "encoding/binary"
// LengthField implements the PushEncoder and PushDecoder interfaces for calculating 4-byte lengths.
type lengthField struct {
startOffset int
}
func (l *lengthField) saveOffset(in int) {
l.startOffset = in
}
func (l *lengthField) reserveLength() int {
return 4
}
func (l *lengthField) run(curOffset int, buf []byte) error {
binary.BigEndian.PutUint32(buf[l.startOffset:], uint32(curOffset-l.startOffset-4))
return nil
}
func (l *lengthField) check(curOffset int, buf []byte) error {
if uint32(curOffset-l.startOffset-4) != binary.BigEndian.Uint32(buf[l.startOffset:]) {
return PacketDecodingError{"length field invalid"}
}
return nil
}

View File

@ -0,0 +1,20 @@
package sarama
type ListGroupsRequest struct {
}
func (r *ListGroupsRequest) encode(pe packetEncoder) error {
return nil
}
func (r *ListGroupsRequest) decode(pd packetDecoder) (err error) {
return nil
}
func (r *ListGroupsRequest) key() int16 {
return 16
}
func (r *ListGroupsRequest) version() int16 {
return 0
}

View File

@ -0,0 +1,56 @@
package sarama
type ListGroupsResponse struct {
Err KError
Groups map[string]string
}
func (r *ListGroupsResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
if err := pe.putArrayLength(len(r.Groups)); err != nil {
return err
}
for groupId, protocolType := range r.Groups {
if err := pe.putString(groupId); err != nil {
return err
}
if err := pe.putString(protocolType); err != nil {
return err
}
}
return nil
}
func (r *ListGroupsResponse) decode(pd packetDecoder) error {
if kerr, err := pd.getInt16(); err != nil {
return err
} else {
r.Err = KError(kerr)
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.Groups = make(map[string]string)
for i := 0; i < n; i++ {
groupId, err := pd.getString()
if err != nil {
return err
}
protocolType, err := pd.getString()
if err != nil {
return err
}
r.Groups[groupId] = protocolType
}
return nil
}

View File

@ -0,0 +1,153 @@
package sarama
import (
"bytes"
"compress/gzip"
"fmt"
"io/ioutil"
)
// CompressionCodec represents the various compression codecs recognized by Kafka in messages.
type CompressionCodec int8
// only the last two bits are really used
const compressionCodecMask int8 = 0x03
const (
CompressionNone CompressionCodec = 0
CompressionGZIP CompressionCodec = 1
CompressionSnappy CompressionCodec = 2
)
// The spec just says: "This is a version id used to allow backwards compatible evolution of the message
// binary format." but it doesn't say what the current value is, so presumably 0...
const messageFormat int8 = 0
type Message struct {
Codec CompressionCodec // codec used to compress the message contents
Key []byte // the message key, may be nil
Value []byte // the message contents
Set *MessageSet // the message set a message might wrap
compressedCache []byte
}
func (m *Message) encode(pe packetEncoder) error {
pe.push(&crc32Field{})
pe.putInt8(messageFormat)
attributes := int8(m.Codec) & compressionCodecMask
pe.putInt8(attributes)
err := pe.putBytes(m.Key)
if err != nil {
return err
}
var payload []byte
if m.compressedCache != nil {
payload = m.compressedCache
m.compressedCache = nil
} else {
switch m.Codec {
case CompressionNone:
payload = m.Value
case CompressionGZIP:
var buf bytes.Buffer
writer := gzip.NewWriter(&buf)
if _, err = writer.Write(m.Value); err != nil {
return err
}
if err = writer.Close(); err != nil {
return err
}
m.compressedCache = buf.Bytes()
payload = m.compressedCache
case CompressionSnappy:
tmp := snappyEncode(m.Value)
m.compressedCache = tmp
payload = m.compressedCache
default:
return PacketEncodingError{fmt.Sprintf("unsupported compression codec (%d)", m.Codec)}
}
}
if err = pe.putBytes(payload); err != nil {
return err
}
return pe.pop()
}
func (m *Message) decode(pd packetDecoder) (err error) {
err = pd.push(&crc32Field{})
if err != nil {
return err
}
format, err := pd.getInt8()
if err != nil {
return err
}
if format != messageFormat {
return PacketDecodingError{"unexpected messageFormat"}
}
attribute, err := pd.getInt8()
if err != nil {
return err
}
m.Codec = CompressionCodec(attribute & compressionCodecMask)
m.Key, err = pd.getBytes()
if err != nil {
return err
}
m.Value, err = pd.getBytes()
if err != nil {
return err
}
switch m.Codec {
case CompressionNone:
// nothing to do
case CompressionGZIP:
if m.Value == nil {
return PacketDecodingError{"GZIP compression specified, but no data to uncompress"}
}
reader, err := gzip.NewReader(bytes.NewReader(m.Value))
if err != nil {
return err
}
if m.Value, err = ioutil.ReadAll(reader); err != nil {
return err
}
if err := m.decodeSet(); err != nil {
return err
}
case CompressionSnappy:
if m.Value == nil {
return PacketDecodingError{"Snappy compression specified, but no data to uncompress"}
}
if m.Value, err = snappyDecode(m.Value); err != nil {
return err
}
if err := m.decodeSet(); err != nil {
return err
}
default:
return PacketDecodingError{fmt.Sprintf("invalid compression specified (%d)", m.Codec)}
}
return pd.pop()
}
// decodes a message set from a previousy encoded bulk-message
func (m *Message) decodeSet() (err error) {
pd := realDecoder{raw: m.Value}
m.Set = &MessageSet{}
return m.Set.decode(&pd)
}

View File

@ -0,0 +1,89 @@
package sarama
type MessageBlock struct {
Offset int64
Msg *Message
}
// Messages convenience helper which returns either all the
// messages that are wrapped in this block
func (msb *MessageBlock) Messages() []*MessageBlock {
if msb.Msg.Set != nil {
return msb.Msg.Set.Messages
}
return []*MessageBlock{msb}
}
func (msb *MessageBlock) encode(pe packetEncoder) error {
pe.putInt64(msb.Offset)
pe.push(&lengthField{})
err := msb.Msg.encode(pe)
if err != nil {
return err
}
return pe.pop()
}
func (msb *MessageBlock) decode(pd packetDecoder) (err error) {
if msb.Offset, err = pd.getInt64(); err != nil {
return err
}
if err = pd.push(&lengthField{}); err != nil {
return err
}
msb.Msg = new(Message)
if err = msb.Msg.decode(pd); err != nil {
return err
}
if err = pd.pop(); err != nil {
return err
}
return nil
}
type MessageSet struct {
PartialTrailingMessage bool // whether the set on the wire contained an incomplete trailing MessageBlock
Messages []*MessageBlock
}
func (ms *MessageSet) encode(pe packetEncoder) error {
for i := range ms.Messages {
err := ms.Messages[i].encode(pe)
if err != nil {
return err
}
}
return nil
}
func (ms *MessageSet) decode(pd packetDecoder) (err error) {
ms.Messages = nil
for pd.remaining() > 0 {
msb := new(MessageBlock)
err = msb.decode(pd)
switch err {
case nil:
ms.Messages = append(ms.Messages, msb)
case ErrInsufficientData:
// As an optimization the server is allowed to return a partial message at the
// end of the message set. Clients should handle this case. So we just ignore such things.
ms.PartialTrailingMessage = true
return nil
default:
return err
}
}
return nil
}
func (ms *MessageSet) addMessage(msg *Message) {
block := new(MessageBlock)
block.Msg = msg
ms.Messages = append(ms.Messages, block)
}

View File

@ -0,0 +1,48 @@
package sarama
type MetadataRequest struct {
Topics []string
}
func (mr *MetadataRequest) encode(pe packetEncoder) error {
err := pe.putArrayLength(len(mr.Topics))
if err != nil {
return err
}
for i := range mr.Topics {
err = pe.putString(mr.Topics[i])
if err != nil {
return err
}
}
return nil
}
func (mr *MetadataRequest) decode(pd packetDecoder) error {
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
mr.Topics = make([]string, topicCount)
for i := range mr.Topics {
topic, err := pd.getString()
if err != nil {
return err
}
mr.Topics[i] = topic
}
return nil
}
func (mr *MetadataRequest) key() int16 {
return 3
}
func (mr *MetadataRequest) version() int16 {
return 0
}

View File

@ -0,0 +1,227 @@
package sarama
type PartitionMetadata struct {
Err KError
ID int32
Leader int32
Replicas []int32
Isr []int32
}
func (pm *PartitionMetadata) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
pm.Err = KError(tmp)
pm.ID, err = pd.getInt32()
if err != nil {
return err
}
pm.Leader, err = pd.getInt32()
if err != nil {
return err
}
pm.Replicas, err = pd.getInt32Array()
if err != nil {
return err
}
pm.Isr, err = pd.getInt32Array()
if err != nil {
return err
}
return nil
}
func (pm *PartitionMetadata) encode(pe packetEncoder) (err error) {
pe.putInt16(int16(pm.Err))
pe.putInt32(pm.ID)
pe.putInt32(pm.Leader)
err = pe.putInt32Array(pm.Replicas)
if err != nil {
return err
}
err = pe.putInt32Array(pm.Isr)
if err != nil {
return err
}
return nil
}
type TopicMetadata struct {
Err KError
Name string
Partitions []*PartitionMetadata
}
func (tm *TopicMetadata) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
tm.Err = KError(tmp)
tm.Name, err = pd.getString()
if err != nil {
return err
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
tm.Partitions = make([]*PartitionMetadata, n)
for i := 0; i < n; i++ {
tm.Partitions[i] = new(PartitionMetadata)
err = tm.Partitions[i].decode(pd)
if err != nil {
return err
}
}
return nil
}
func (tm *TopicMetadata) encode(pe packetEncoder) (err error) {
pe.putInt16(int16(tm.Err))
err = pe.putString(tm.Name)
if err != nil {
return err
}
err = pe.putArrayLength(len(tm.Partitions))
if err != nil {
return err
}
for _, pm := range tm.Partitions {
err = pm.encode(pe)
if err != nil {
return err
}
}
return nil
}
type MetadataResponse struct {
Brokers []*Broker
Topics []*TopicMetadata
}
func (m *MetadataResponse) decode(pd packetDecoder) (err error) {
n, err := pd.getArrayLength()
if err != nil {
return err
}
m.Brokers = make([]*Broker, n)
for i := 0; i < n; i++ {
m.Brokers[i] = new(Broker)
err = m.Brokers[i].decode(pd)
if err != nil {
return err
}
}
n, err = pd.getArrayLength()
if err != nil {
return err
}
m.Topics = make([]*TopicMetadata, n)
for i := 0; i < n; i++ {
m.Topics[i] = new(TopicMetadata)
err = m.Topics[i].decode(pd)
if err != nil {
return err
}
}
return nil
}
func (m *MetadataResponse) encode(pe packetEncoder) error {
err := pe.putArrayLength(len(m.Brokers))
if err != nil {
return err
}
for _, broker := range m.Brokers {
err = broker.encode(pe)
if err != nil {
return err
}
}
err = pe.putArrayLength(len(m.Topics))
if err != nil {
return err
}
for _, tm := range m.Topics {
err = tm.encode(pe)
if err != nil {
return err
}
}
return nil
}
// testing API
func (m *MetadataResponse) AddBroker(addr string, id int32) {
m.Brokers = append(m.Brokers, &Broker{id: id, addr: addr})
}
func (m *MetadataResponse) AddTopic(topic string, err KError) *TopicMetadata {
var tmatch *TopicMetadata
for _, tm := range m.Topics {
if tm.Name == topic {
tmatch = tm
goto foundTopic
}
}
tmatch = new(TopicMetadata)
tmatch.Name = topic
m.Topics = append(m.Topics, tmatch)
foundTopic:
tmatch.Err = err
return tmatch
}
func (m *MetadataResponse) AddTopicPartition(topic string, partition, brokerID int32, replicas, isr []int32, err KError) {
tmatch := m.AddTopic(topic, ErrNoError)
var pmatch *PartitionMetadata
for _, pm := range tmatch.Partitions {
if pm.ID == partition {
pmatch = pm
goto foundPartition
}
}
pmatch = new(PartitionMetadata)
pmatch.ID = partition
tmatch.Partitions = append(tmatch.Partitions, pmatch)
foundPartition:
pmatch.Leader = brokerID
pmatch.Replicas = replicas
pmatch.Isr = isr
pmatch.Err = err
}

View File

@ -0,0 +1,13 @@
# sarama/mocks
The `mocks` subpackage includes mock implementations that implement the interfaces of the major sarama types.
You can use them to test your sarama applications using dependency injection.
The following mock objects are available:
- [Consumer](https://godoc.org/github.com/Shopify/sarama/mocks#Consumer), which will create [PartitionConsumer](https://godoc.org/github.com/Shopify/sarama/mocks#PartitionConsumer) mocks.
- [AsyncProducer](https://godoc.org/github.com/Shopify/sarama/mocks#AsyncProducer)
- [SyncProducer](https://godoc.org/github.com/Shopify/sarama/mocks#SyncProducer)
The mocks allow you to set expectations on them. When you close the mocks, the expectations will be verified,
and the results will be reported to the `*testing.T` object you provided when creating the mock.

View File

@ -0,0 +1,142 @@
package mocks
import (
"sync"
"github.com/Shopify/sarama"
)
// AsyncProducer implements sarama's Producer interface for testing purposes.
// Before you can send messages to it's Input channel, you have to set expectations
// so it knows how to handle the input. This way you can easily test success and
// failure scenarios.
type AsyncProducer struct {
l sync.Mutex
t ErrorReporter
expectations []*producerExpectation
closed chan struct{}
input chan *sarama.ProducerMessage
successes chan *sarama.ProducerMessage
errors chan *sarama.ProducerError
lastOffset int64
}
// NewAsyncProducer instantiates a new Producer mock. The t argument should
// be the *testing.T instance of your test method. An error will be written to it if
// an expectation is violated. The config argument is used to determine whether it
// should ack successes on the Successes channel.
func NewAsyncProducer(t ErrorReporter, config *sarama.Config) *AsyncProducer {
if config == nil {
config = sarama.NewConfig()
}
mp := &AsyncProducer{
t: t,
closed: make(chan struct{}, 0),
expectations: make([]*producerExpectation, 0),
input: make(chan *sarama.ProducerMessage, config.ChannelBufferSize),
successes: make(chan *sarama.ProducerMessage, config.ChannelBufferSize),
errors: make(chan *sarama.ProducerError, config.ChannelBufferSize),
}
go func() {
defer func() {
close(mp.successes)
close(mp.errors)
}()
for msg := range mp.input {
mp.l.Lock()
if mp.expectations == nil || len(mp.expectations) == 0 {
mp.expectations = nil
mp.t.Errorf("No more expectation set on this mock producer to handle the input message.")
} else {
expectation := mp.expectations[0]
mp.expectations = mp.expectations[1:]
if expectation.Result == errProduceSuccess {
mp.lastOffset++
if config.Producer.Return.Successes {
msg.Offset = mp.lastOffset
mp.successes <- msg
}
} else {
if config.Producer.Return.Errors {
mp.errors <- &sarama.ProducerError{Err: expectation.Result, Msg: msg}
}
}
}
mp.l.Unlock()
}
mp.l.Lock()
if len(mp.expectations) > 0 {
mp.t.Errorf("Expected to exhaust all expectations, but %d are left.", len(mp.expectations))
}
mp.l.Unlock()
close(mp.closed)
}()
return mp
}
////////////////////////////////////////////////
// Implement Producer interface
////////////////////////////////////////////////
// AsyncClose corresponds with the AsyncClose method of sarama's Producer implementation.
// By closing a mock producer, you also tell it that no more input will be provided, so it will
// write an error to the test state if there's any remaining expectations.
func (mp *AsyncProducer) AsyncClose() {
close(mp.input)
}
// Close corresponds with the Close method of sarama's Producer implementation.
// By closing a mock producer, you also tell it that no more input will be provided, so it will
// write an error to the test state if there's any remaining expectations.
func (mp *AsyncProducer) Close() error {
mp.AsyncClose()
<-mp.closed
return nil
}
// Input corresponds with the Input method of sarama's Producer implementation.
// You have to set expectations on the mock producer before writing messages to the Input
// channel, so it knows how to handle them. If there is no more remaining expectations and
// a messages is written to the Input channel, the mock producer will write an error to the test
// state object.
func (mp *AsyncProducer) Input() chan<- *sarama.ProducerMessage {
return mp.input
}
// Successes corresponds with the Successes method of sarama's Producer implementation.
func (mp *AsyncProducer) Successes() <-chan *sarama.ProducerMessage {
return mp.successes
}
// Errors corresponds with the Errors method of sarama's Producer implementation.
func (mp *AsyncProducer) Errors() <-chan *sarama.ProducerError {
return mp.errors
}
////////////////////////////////////////////////
// Setting expectations
////////////////////////////////////////////////
// ExpectInputAndSucceed sets an expectation on the mock producer that a message will be provided
// on the input channel. The mock producer will handle the message as if it is produced successfully,
// i.e. it will make it available on the Successes channel if the Producer.Return.Successes setting
// is set to true.
func (mp *AsyncProducer) ExpectInputAndSucceed() {
mp.l.Lock()
defer mp.l.Unlock()
mp.expectations = append(mp.expectations, &producerExpectation{Result: errProduceSuccess})
}
// ExpectInputAndFail sets an expectation on the mock producer that a message will be provided
// on the input channel. The mock producer will handle the message as if it failed to produce
// successfully. This means it will make a ProducerError available on the Errors channel.
func (mp *AsyncProducer) ExpectInputAndFail(err error) {
mp.l.Lock()
defer mp.l.Unlock()
mp.expectations = append(mp.expectations, &producerExpectation{Result: err})
}

View File

@ -0,0 +1,299 @@
package mocks
import (
"sync"
"sync/atomic"
"github.com/Shopify/sarama"
)
// Consumer implements sarama's Consumer interface for testing purposes.
// Before you can start consuming from this consumer, you have to register
// topic/partitions using ExpectConsumePartition, and set expectations on them.
type Consumer struct {
l sync.Mutex
t ErrorReporter
config *sarama.Config
partitionConsumers map[string]map[int32]*PartitionConsumer
metadata map[string][]int32
}
// NewConsumer returns a new mock Consumer instance. The t argument should
// be the *testing.T instance of your test method. An error will be written to it if
// an expectation is violated. The config argument is currently unused and can be set to nil.
func NewConsumer(t ErrorReporter, config *sarama.Config) *Consumer {
if config == nil {
config = sarama.NewConfig()
}
c := &Consumer{
t: t,
config: config,
partitionConsumers: make(map[string]map[int32]*PartitionConsumer),
}
return c
}
///////////////////////////////////////////////////
// Consumer interface implementation
///////////////////////////////////////////////////
// ConsumePartition implements the ConsumePartition method from the sarama.Consumer interface.
// Before you can start consuming a partition, you have to set expectations on it using
// ExpectConsumePartition. You can only consume a partition once per consumer.
func (c *Consumer) ConsumePartition(topic string, partition int32, offset int64) (sarama.PartitionConsumer, error) {
c.l.Lock()
defer c.l.Unlock()
if c.partitionConsumers[topic] == nil || c.partitionConsumers[topic][partition] == nil {
c.t.Errorf("No expectations set for %s/%d", topic, partition)
return nil, errOutOfExpectations
}
pc := c.partitionConsumers[topic][partition]
if pc.consumed {
return nil, sarama.ConfigurationError("The topic/partition is already being consumed")
}
if pc.offset != AnyOffset && pc.offset != offset {
c.t.Errorf("Unexpected offset when calling ConsumePartition for %s/%d. Expected %d, got %d.", topic, partition, pc.offset, offset)
}
pc.consumed = true
return pc, nil
}
// Topics returns a list of topics, as registered with SetMetadata
func (c *Consumer) Topics() ([]string, error) {
c.l.Lock()
defer c.l.Unlock()
if c.metadata == nil {
c.t.Errorf("Unexpected call to Topics. Initialize the mock's topic metadata with SetMetadata.")
return nil, sarama.ErrOutOfBrokers
}
var result []string
for topic := range c.metadata {
result = append(result, topic)
}
return result, nil
}
// Partitions returns the list of parititons for the given topic, as registered with SetMetadata
func (c *Consumer) Partitions(topic string) ([]int32, error) {
c.l.Lock()
defer c.l.Unlock()
if c.metadata == nil {
c.t.Errorf("Unexpected call to Partitions. Initialize the mock's topic metadata with SetMetadata.")
return nil, sarama.ErrOutOfBrokers
}
if c.metadata[topic] == nil {
return nil, sarama.ErrUnknownTopicOrPartition
}
return c.metadata[topic], nil
}
// Close implements the Close method from the sarama.Consumer interface. It will close
// all registered PartitionConsumer instances.
func (c *Consumer) Close() error {
c.l.Lock()
defer c.l.Unlock()
for _, partitions := range c.partitionConsumers {
for _, partitionConsumer := range partitions {
_ = partitionConsumer.Close()
}
}
return nil
}
///////////////////////////////////////////////////
// Expectation API
///////////////////////////////////////////////////
// SetTopicMetadata sets the clusters topic/partition metadata,
// which will be returned by Topics() and Partitions().
func (c *Consumer) SetTopicMetadata(metadata map[string][]int32) {
c.l.Lock()
defer c.l.Unlock()
c.metadata = metadata
}
// ExpectConsumePartition will register a topic/partition, so you can set expectations on it.
// The registered PartitionConsumer will be returned, so you can set expectations
// on it using method chanining. Once a topic/partition is registered, you are
// expected to start consuming it using ConsumePartition. If that doesn't happen,
// an error will be written to the error reporter once the mock consumer is closed. It will
// also expect that the
func (c *Consumer) ExpectConsumePartition(topic string, partition int32, offset int64) *PartitionConsumer {
c.l.Lock()
defer c.l.Unlock()
if c.partitionConsumers[topic] == nil {
c.partitionConsumers[topic] = make(map[int32]*PartitionConsumer)
}
if c.partitionConsumers[topic][partition] == nil {
c.partitionConsumers[topic][partition] = &PartitionConsumer{
t: c.t,
topic: topic,
partition: partition,
offset: offset,
messages: make(chan *sarama.ConsumerMessage, c.config.ChannelBufferSize),
errors: make(chan *sarama.ConsumerError, c.config.ChannelBufferSize),
}
}
return c.partitionConsumers[topic][partition]
}
///////////////////////////////////////////////////
// PartitionConsumer mock type
///////////////////////////////////////////////////
// PartitionConsumer implements sarama's PartitionConsumer interface for testing purposes.
// It is returned by the mock Consumers ConsumePartitionMethod, but only if it is
// registered first using the Consumer's ExpectConsumePartition method. Before consuming the
// Errors and Messages channel, you should specify what values will be provided on these
// channels using YieldMessage and YieldError.
type PartitionConsumer struct {
l sync.Mutex
t ErrorReporter
topic string
partition int32
offset int64
messages chan *sarama.ConsumerMessage
errors chan *sarama.ConsumerError
singleClose sync.Once
consumed bool
errorsShouldBeDrained bool
messagesShouldBeDrained bool
highWaterMarkOffset int64
}
///////////////////////////////////////////////////
// PartitionConsumer interface implementation
///////////////////////////////////////////////////
// AsyncClose implements the AsyncClose method from the sarama.PartitionConsumer interface.
func (pc *PartitionConsumer) AsyncClose() {
pc.singleClose.Do(func() {
close(pc.messages)
close(pc.errors)
})
}
// Close implements the Close method from the sarama.PartitionConsumer interface. It will
// verify whether the partition consumer was actually started.
func (pc *PartitionConsumer) Close() error {
if !pc.consumed {
pc.t.Errorf("Expectations set on %s/%d, but no partition consumer was started.", pc.topic, pc.partition)
return errPartitionConsumerNotStarted
}
if pc.errorsShouldBeDrained && len(pc.errors) > 0 {
pc.t.Errorf("Expected the errors channel for %s/%d to be drained on close, but found %d errors.", pc.topic, pc.partition, len(pc.errors))
}
if pc.messagesShouldBeDrained && len(pc.messages) > 0 {
pc.t.Errorf("Expected the messages channel for %s/%d to be drained on close, but found %d messages.", pc.topic, pc.partition, len(pc.messages))
}
pc.AsyncClose()
var (
closeErr error
wg sync.WaitGroup
)
wg.Add(1)
go func() {
defer wg.Done()
var errs = make(sarama.ConsumerErrors, 0)
for err := range pc.errors {
errs = append(errs, err)
}
if len(errs) > 0 {
closeErr = errs
}
}()
wg.Add(1)
go func() {
defer wg.Done()
for _ = range pc.messages {
// drain
}
}()
wg.Wait()
return closeErr
}
// Errors implements the Errors method from the sarama.PartitionConsumer interface.
func (pc *PartitionConsumer) Errors() <-chan *sarama.ConsumerError {
return pc.errors
}
// Messages implements the Messages method from the sarama.PartitionConsumer interface.
func (pc *PartitionConsumer) Messages() <-chan *sarama.ConsumerMessage {
return pc.messages
}
func (pc *PartitionConsumer) HighWaterMarkOffset() int64 {
return atomic.LoadInt64(&pc.highWaterMarkOffset) + 1
}
///////////////////////////////////////////////////
// Expectation API
///////////////////////////////////////////////////
// YieldMessage will yield a messages Messages channel of this partition consumer
// when it is consumed. By default, the mock consumer will not verify whether this
// message was consumed from the Messages channel, because there are legitimate
// reasons forthis not to happen. ou can call ExpectMessagesDrainedOnClose so it will
// verify that the channel is empty on close.
func (pc *PartitionConsumer) YieldMessage(msg *sarama.ConsumerMessage) {
pc.l.Lock()
defer pc.l.Unlock()
msg.Topic = pc.topic
msg.Partition = pc.partition
msg.Offset = atomic.AddInt64(&pc.highWaterMarkOffset, 1)
pc.messages <- msg
}
// YieldError will yield an error on the Errors channel of this partition consumer
// when it is consumed. By default, the mock consumer will not verify whether this error was
// consumed from the Errors channel, because there are legitimate reasons for this
// not to happen. You can call ExpectErrorsDrainedOnClose so it will verify that
// the channel is empty on close.
func (pc *PartitionConsumer) YieldError(err error) {
pc.errors <- &sarama.ConsumerError{
Topic: pc.topic,
Partition: pc.partition,
Err: err,
}
}
// ExpectMessagesDrainedOnClose sets an expectation on the partition consumer
// that the messages channel will be fully drained when Close is called. If this
// expectation is not met, an error is reported to the error reporter.
func (pc *PartitionConsumer) ExpectMessagesDrainedOnClose() {
pc.messagesShouldBeDrained = true
}
// ExpectErrorsDrainedOnClose sets an expectation on the partition consumer
// that the errors channel will be fully drained when Close is called. If this
// expectation is not met, an error is reported to the error reporter.
func (pc *PartitionConsumer) ExpectErrorsDrainedOnClose() {
pc.errorsShouldBeDrained = true
}

View File

@ -0,0 +1,43 @@
/*
Package mocks provides mocks that can be used for testing applications
that use Sarama. The mock types provided by this package implement the
interfaces Sarama exports, so you can use them for dependency injection
in your tests.
All mock instances require you to set expectations on them before you
can use them. It will determine how the mock will behave. If an
expectation is not met, it will make your test fail.
NOTE: this package currently does not fall under the API stability
guarantee of Sarama as it is still considered experimental.
*/
package mocks
import (
"errors"
"github.com/Shopify/sarama"
)
// ErrorReporter is a simple interface that includes the testing.T methods we use to report
// expectation violations when using the mock objects.
type ErrorReporter interface {
Errorf(string, ...interface{})
}
var (
errProduceSuccess error = nil
errOutOfExpectations = errors.New("No more expectations set on mock")
errPartitionConsumerNotStarted = errors.New("The partition consumer was never started")
)
const AnyOffset int64 = -1000
type producerExpectation struct {
Result error
}
type consumerExpectation struct {
Err error
Msg *sarama.ConsumerMessage
}

View File

@ -0,0 +1,94 @@
package mocks
import (
"sync"
"github.com/Shopify/sarama"
)
// SyncProducer implements sarama's SyncProducer interface for testing purposes.
// Before you can use it, you have to set expectations on the mock SyncProducer
// to tell it how to handle calls to SendMessage, so you can easily test success
// and failure scenarios.
type SyncProducer struct {
l sync.Mutex
t ErrorReporter
expectations []*producerExpectation
lastOffset int64
}
// NewSyncProducer instantiates a new SyncProducer mock. The t argument should
// be the *testing.T instance of your test method. An error will be written to it if
// an expectation is violated. The config argument is currently unused, but is
// maintained to be compatible with the async Producer.
func NewSyncProducer(t ErrorReporter, config *sarama.Config) *SyncProducer {
return &SyncProducer{
t: t,
expectations: make([]*producerExpectation, 0),
}
}
////////////////////////////////////////////////
// Implement SyncProducer interface
////////////////////////////////////////////////
// SendMessage corresponds with the SendMessage method of sarama's SyncProducer implementation.
// You have to set expectations on the mock producer before calling SendMessage, so it knows
// how to handle them. If there is no more remaining expectations when SendMessage is called,
// the mock producer will write an error to the test state object.
func (sp *SyncProducer) SendMessage(msg *sarama.ProducerMessage) (partition int32, offset int64, err error) {
sp.l.Lock()
defer sp.l.Unlock()
if len(sp.expectations) > 0 {
expectation := sp.expectations[0]
sp.expectations = sp.expectations[1:]
if expectation.Result == errProduceSuccess {
sp.lastOffset++
msg.Offset = sp.lastOffset
return 0, msg.Offset, nil
} else {
return -1, -1, expectation.Result
}
} else {
sp.t.Errorf("No more expectation set on this mock producer to handle the input message.")
return -1, -1, errOutOfExpectations
}
}
// Close corresponds with the Close method of sarama's SyncProducer implementation.
// By closing a mock syncproducer, you also tell it that no more SendMessage calls will follow,
// so it will write an error to the test state if there's any remaining expectations.
func (sp *SyncProducer) Close() error {
sp.l.Lock()
defer sp.l.Unlock()
if len(sp.expectations) > 0 {
sp.t.Errorf("Expected to exhaust all expectations, but %d are left.", len(sp.expectations))
}
return nil
}
////////////////////////////////////////////////
// Setting expectations
////////////////////////////////////////////////
// ExpectSendMessageAndSucceed sets an expectation on the mock producer that SendMessage will be
// called. The mock producer will handle the message as if it produced successfully, i.e. by
// returning a valid partition, and offset, and a nil error.
func (sp *SyncProducer) ExpectSendMessageAndSucceed() {
sp.l.Lock()
defer sp.l.Unlock()
sp.expectations = append(sp.expectations, &producerExpectation{Result: errProduceSuccess})
}
// ExpectSendMessageAndFail sets an expectation on the mock producer that SendMessage will be
// called. The mock producer will handle the message as if it failed to produce
// successfully, i.e. by returning the provided error.
func (sp *SyncProducer) ExpectSendMessageAndFail(err error) {
sp.l.Lock()
defer sp.l.Unlock()
sp.expectations = append(sp.expectations, &producerExpectation{Result: err})
}

View File

@ -0,0 +1,172 @@
package sarama
// ReceiveTime is a special value for the timestamp field of Offset Commit Requests which
// tells the broker to set the timestamp to the time at which the request was received.
// The timestamp is only used if message version 1 is used, which requires kafka 0.8.2.
const ReceiveTime int64 = -1
type offsetCommitRequestBlock struct {
offset int64
timestamp int64
metadata string
}
func (r *offsetCommitRequestBlock) encode(pe packetEncoder, version int16) error {
pe.putInt64(r.offset)
if version == 1 {
pe.putInt64(r.timestamp)
} else if r.timestamp != 0 {
Logger.Println("Non-zero timestamp specified for OffsetCommitRequest not v1, it will be ignored")
}
return pe.putString(r.metadata)
}
func (r *offsetCommitRequestBlock) decode(pd packetDecoder, version int16) (err error) {
if r.offset, err = pd.getInt64(); err != nil {
return err
}
if version == 1 {
if r.timestamp, err = pd.getInt64(); err != nil {
return err
}
}
r.metadata, err = pd.getString()
return err
}
type OffsetCommitRequest struct {
ConsumerGroup string
ConsumerGroupGeneration int32 // v1 or later
ConsumerID string // v1 or later
RetentionTime int64 // v2 or later
// Version can be:
// - 0 (kafka 0.8.1 and later)
// - 1 (kafka 0.8.2 and later)
// - 2 (kafka 0.8.3 and later)
Version int16
blocks map[string]map[int32]*offsetCommitRequestBlock
}
func (r *OffsetCommitRequest) encode(pe packetEncoder) error {
if r.Version < 0 || r.Version > 2 {
return PacketEncodingError{"invalid or unsupported OffsetCommitRequest version field"}
}
if err := pe.putString(r.ConsumerGroup); err != nil {
return err
}
if r.Version >= 1 {
pe.putInt32(r.ConsumerGroupGeneration)
if err := pe.putString(r.ConsumerID); err != nil {
return err
}
} else {
if r.ConsumerGroupGeneration != 0 {
Logger.Println("Non-zero ConsumerGroupGeneration specified for OffsetCommitRequest v0, it will be ignored")
}
if r.ConsumerID != "" {
Logger.Println("Non-empty ConsumerID specified for OffsetCommitRequest v0, it will be ignored")
}
}
if r.Version >= 2 {
pe.putInt64(r.RetentionTime)
} else if r.RetentionTime != 0 {
Logger.Println("Non-zero RetentionTime specified for OffsetCommitRequest version <2, it will be ignored")
}
if err := pe.putArrayLength(len(r.blocks)); err != nil {
return err
}
for topic, partitions := range r.blocks {
if err := pe.putString(topic); err != nil {
return err
}
if err := pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err := block.encode(pe, r.Version); err != nil {
return err
}
}
}
return nil
}
func (r *OffsetCommitRequest) decode(pd packetDecoder) (err error) {
if r.ConsumerGroup, err = pd.getString(); err != nil {
return err
}
if r.Version >= 1 {
if r.ConsumerGroupGeneration, err = pd.getInt32(); err != nil {
return err
}
if r.ConsumerID, err = pd.getString(); err != nil {
return err
}
}
if r.Version >= 2 {
if r.RetentionTime, err = pd.getInt64(); err != nil {
return err
}
}
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
r.blocks = make(map[string]map[int32]*offsetCommitRequestBlock)
for i := 0; i < topicCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
r.blocks[topic] = make(map[int32]*offsetCommitRequestBlock)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
block := &offsetCommitRequestBlock{}
if err := block.decode(pd, r.Version); err != nil {
return err
}
r.blocks[topic][partition] = block
}
}
return nil
}
func (r *OffsetCommitRequest) key() int16 {
return 8
}
func (r *OffsetCommitRequest) version() int16 {
return r.Version
}
func (r *OffsetCommitRequest) AddBlock(topic string, partitionID int32, offset int64, timestamp int64, metadata string) {
if r.blocks == nil {
r.blocks = make(map[string]map[int32]*offsetCommitRequestBlock)
}
if r.blocks[topic] == nil {
r.blocks[topic] = make(map[int32]*offsetCommitRequestBlock)
}
r.blocks[topic][partitionID] = &offsetCommitRequestBlock{offset, timestamp, metadata}
}

View File

@ -0,0 +1,73 @@
package sarama
type OffsetCommitResponse struct {
Errors map[string]map[int32]KError
}
func (r *OffsetCommitResponse) AddError(topic string, partition int32, kerror KError) {
if r.Errors == nil {
r.Errors = make(map[string]map[int32]KError)
}
partitions := r.Errors[topic]
if partitions == nil {
partitions = make(map[int32]KError)
r.Errors[topic] = partitions
}
partitions[partition] = kerror
}
func (r *OffsetCommitResponse) encode(pe packetEncoder) error {
if err := pe.putArrayLength(len(r.Errors)); err != nil {
return err
}
for topic, partitions := range r.Errors {
if err := pe.putString(topic); err != nil {
return err
}
if err := pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, kerror := range partitions {
pe.putInt32(partition)
pe.putInt16(int16(kerror))
}
}
return nil
}
func (r *OffsetCommitResponse) decode(pd packetDecoder) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil || numTopics == 0 {
return err
}
r.Errors = make(map[string]map[int32]KError, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numErrors, err := pd.getArrayLength()
if err != nil {
return err
}
r.Errors[name] = make(map[int32]KError, numErrors)
for j := 0; j < numErrors; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
tmp, err := pd.getInt16()
if err != nil {
return err
}
r.Errors[name][id] = KError(tmp)
}
}
return nil
}

View File

@ -0,0 +1,71 @@
package sarama
type OffsetFetchRequest struct {
ConsumerGroup string
Version int16
partitions map[string][]int32
}
func (r *OffsetFetchRequest) encode(pe packetEncoder) (err error) {
if r.Version < 0 || r.Version > 1 {
return PacketEncodingError{"invalid or unsupported OffsetFetchRequest version field"}
}
if err = pe.putString(r.ConsumerGroup); err != nil {
return err
}
if err = pe.putArrayLength(len(r.partitions)); err != nil {
return err
}
for topic, partitions := range r.partitions {
if err = pe.putString(topic); err != nil {
return err
}
if err = pe.putInt32Array(partitions); err != nil {
return err
}
}
return nil
}
func (r *OffsetFetchRequest) decode(pd packetDecoder) (err error) {
if r.ConsumerGroup, err = pd.getString(); err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
if partitionCount == 0 {
return nil
}
r.partitions = make(map[string][]int32)
for i := 0; i < partitionCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitions, err := pd.getInt32Array()
if err != nil {
return err
}
r.partitions[topic] = partitions
}
return nil
}
func (r *OffsetFetchRequest) key() int16 {
return 9
}
func (r *OffsetFetchRequest) version() int16 {
return r.Version
}
func (r *OffsetFetchRequest) AddPartition(topic string, partitionID int32) {
if r.partitions == nil {
r.partitions = make(map[string][]int32)
}
r.partitions[topic] = append(r.partitions[topic], partitionID)
}

View File

@ -0,0 +1,131 @@
package sarama
type OffsetFetchResponseBlock struct {
Offset int64
Metadata string
Err KError
}
func (r *OffsetFetchResponseBlock) decode(pd packetDecoder) (err error) {
r.Offset, err = pd.getInt64()
if err != nil {
return err
}
r.Metadata, err = pd.getString()
if err != nil {
return err
}
tmp, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(tmp)
return nil
}
func (r *OffsetFetchResponseBlock) encode(pe packetEncoder) (err error) {
pe.putInt64(r.Offset)
err = pe.putString(r.Metadata)
if err != nil {
return err
}
pe.putInt16(int16(r.Err))
return nil
}
type OffsetFetchResponse struct {
Blocks map[string]map[int32]*OffsetFetchResponseBlock
}
func (r *OffsetFetchResponse) encode(pe packetEncoder) error {
if err := pe.putArrayLength(len(r.Blocks)); err != nil {
return err
}
for topic, partitions := range r.Blocks {
if err := pe.putString(topic); err != nil {
return err
}
if err := pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err := block.encode(pe); err != nil {
return err
}
}
}
return nil
}
func (r *OffsetFetchResponse) decode(pd packetDecoder) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil || numTopics == 0 {
return err
}
r.Blocks = make(map[string]map[int32]*OffsetFetchResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
if numBlocks == 0 {
r.Blocks[name] = nil
continue
}
r.Blocks[name] = make(map[int32]*OffsetFetchResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(OffsetFetchResponseBlock)
err = block.decode(pd)
if err != nil {
return err
}
r.Blocks[name][id] = block
}
}
return nil
}
func (r *OffsetFetchResponse) GetBlock(topic string, partition int32) *OffsetFetchResponseBlock {
if r.Blocks == nil {
return nil
}
if r.Blocks[topic] == nil {
return nil
}
return r.Blocks[topic][partition]
}
func (r *OffsetFetchResponse) AddBlock(topic string, partition int32, block *OffsetFetchResponseBlock) {
if r.Blocks == nil {
r.Blocks = make(map[string]map[int32]*OffsetFetchResponseBlock)
}
partitions := r.Blocks[topic]
if partitions == nil {
partitions = make(map[int32]*OffsetFetchResponseBlock)
r.Blocks[topic] = partitions
}
partitions[partition] = block
}

View File

@ -0,0 +1,515 @@
package sarama
import (
"sync"
"time"
)
// Offset Manager
// OffsetManager uses Kafka to store and fetch consumed partition offsets.
type OffsetManager interface {
// ManagePartition creates a PartitionOffsetManager on the given topic/partition.
// It will return an error if this OffsetManager is already managing the given
// topic/partition.
ManagePartition(topic string, partition int32) (PartitionOffsetManager, error)
// Close stops the OffsetManager from managing offsets. It is required to call
// this function before an OffsetManager object passes out of scope, as it
// will otherwise leak memory. You must call this after all the
// PartitionOffsetManagers are closed.
Close() error
}
type offsetManager struct {
client Client
conf *Config
group string
lock sync.Mutex
poms map[string]map[int32]*partitionOffsetManager
boms map[*Broker]*brokerOffsetManager
}
// NewOffsetManagerFromClient creates a new OffsetManager from the given client.
// It is still necessary to call Close() on the underlying client when finished with the partition manager.
func NewOffsetManagerFromClient(group string, client Client) (OffsetManager, error) {
// Check that we are not dealing with a closed Client before processing any other arguments
if client.Closed() {
return nil, ErrClosedClient
}
om := &offsetManager{
client: client,
conf: client.Config(),
group: group,
poms: make(map[string]map[int32]*partitionOffsetManager),
boms: make(map[*Broker]*brokerOffsetManager),
}
return om, nil
}
func (om *offsetManager) ManagePartition(topic string, partition int32) (PartitionOffsetManager, error) {
pom, err := om.newPartitionOffsetManager(topic, partition)
if err != nil {
return nil, err
}
om.lock.Lock()
defer om.lock.Unlock()
topicManagers := om.poms[topic]
if topicManagers == nil {
topicManagers = make(map[int32]*partitionOffsetManager)
om.poms[topic] = topicManagers
}
if topicManagers[partition] != nil {
return nil, ConfigurationError("That topic/partition is already being managed")
}
topicManagers[partition] = pom
return pom, nil
}
func (om *offsetManager) Close() error {
return nil
}
func (om *offsetManager) refBrokerOffsetManager(broker *Broker) *brokerOffsetManager {
om.lock.Lock()
defer om.lock.Unlock()
bom := om.boms[broker]
if bom == nil {
bom = om.newBrokerOffsetManager(broker)
om.boms[broker] = bom
}
bom.refs++
return bom
}
func (om *offsetManager) unrefBrokerOffsetManager(bom *brokerOffsetManager) {
om.lock.Lock()
defer om.lock.Unlock()
bom.refs--
if bom.refs == 0 {
close(bom.updateSubscriptions)
if om.boms[bom.broker] == bom {
delete(om.boms, bom.broker)
}
}
}
func (om *offsetManager) abandonBroker(bom *brokerOffsetManager) {
om.lock.Lock()
defer om.lock.Unlock()
delete(om.boms, bom.broker)
}
func (om *offsetManager) abandonPartitionOffsetManager(pom *partitionOffsetManager) {
om.lock.Lock()
defer om.lock.Unlock()
delete(om.poms[pom.topic], pom.partition)
if len(om.poms[pom.topic]) == 0 {
delete(om.poms, pom.topic)
}
}
// Partition Offset Manager
// PartitionOffsetManager uses Kafka to store and fetch consumed partition offsets. You MUST call Close()
// on a partition offset manager to avoid leaks, it will not be garbage-collected automatically when it passes
// out of scope.
type PartitionOffsetManager interface {
// NextOffset returns the next offset that should be consumed for the managed
// partition, accompanied by metadata which can be used to reconstruct the state
// of the partition consumer when it resumes. NextOffset() will return
// `config.Consumer.Offsets.Initial` and an empty metadata string if no offset
// was committed for this partition yet.
NextOffset() (int64, string)
// MarkOffset marks the provided offset as processed, alongside a metadata string
// that represents the state of the partition consumer at that point in time. The
// metadata string can be used by another consumer to restore that state, so it
// can resume consumption.
//
// Note: calling MarkOffset does not necessarily commit the offset to the backend
// store immediately for efficiency reasons, and it may never be committed if
// your application crashes. This means that you may end up processing the same
// message twice, and your processing should ideally be idempotent.
MarkOffset(offset int64, metadata string)
// Errors returns a read channel of errors that occur during offset management, if
// enabled. By default, errors are logged and not returned over this channel. If
// you want to implement any custom error handling, set your config's
// Consumer.Return.Errors setting to true, and read from this channel.
Errors() <-chan *ConsumerError
// AsyncClose initiates a shutdown of the PartitionOffsetManager. This method will
// return immediately, after which you should wait until the 'errors' channel has
// been drained and closed. It is required to call this function, or Close before
// a consumer object passes out of scope, as it will otherwise leak memory. You
// must call this before calling Close on the underlying client.
AsyncClose()
// Close stops the PartitionOffsetManager from managing offsets. It is required to
// call this function (or AsyncClose) before a PartitionOffsetManager object
// passes out of scope, as it will otherwise leak memory. You must call this
// before calling Close on the underlying client.
Close() error
}
type partitionOffsetManager struct {
parent *offsetManager
topic string
partition int32
lock sync.Mutex
offset int64
metadata string
dirty bool
clean chan none
broker *brokerOffsetManager
errors chan *ConsumerError
rebalance chan none
dying chan none
}
func (om *offsetManager) newPartitionOffsetManager(topic string, partition int32) (*partitionOffsetManager, error) {
pom := &partitionOffsetManager{
parent: om,
topic: topic,
partition: partition,
clean: make(chan none),
errors: make(chan *ConsumerError, om.conf.ChannelBufferSize),
rebalance: make(chan none, 1),
dying: make(chan none),
}
if err := pom.selectBroker(); err != nil {
return nil, err
}
if err := pom.fetchInitialOffset(om.conf.Metadata.Retry.Max); err != nil {
return nil, err
}
pom.broker.updateSubscriptions <- pom
go withRecover(pom.mainLoop)
return pom, nil
}
func (pom *partitionOffsetManager) mainLoop() {
for {
select {
case <-pom.rebalance:
if err := pom.selectBroker(); err != nil {
pom.handleError(err)
pom.rebalance <- none{}
} else {
pom.broker.updateSubscriptions <- pom
}
case <-pom.dying:
if pom.broker != nil {
select {
case <-pom.rebalance:
case pom.broker.updateSubscriptions <- pom:
}
pom.parent.unrefBrokerOffsetManager(pom.broker)
}
pom.parent.abandonPartitionOffsetManager(pom)
close(pom.errors)
return
}
}
}
func (pom *partitionOffsetManager) selectBroker() error {
if pom.broker != nil {
pom.parent.unrefBrokerOffsetManager(pom.broker)
pom.broker = nil
}
var broker *Broker
var err error
if err = pom.parent.client.RefreshCoordinator(pom.parent.group); err != nil {
return err
}
if broker, err = pom.parent.client.Coordinator(pom.parent.group); err != nil {
return err
}
pom.broker = pom.parent.refBrokerOffsetManager(broker)
return nil
}
func (pom *partitionOffsetManager) fetchInitialOffset(retries int) error {
request := new(OffsetFetchRequest)
request.Version = 1
request.ConsumerGroup = pom.parent.group
request.AddPartition(pom.topic, pom.partition)
response, err := pom.broker.broker.FetchOffset(request)
if err != nil {
return err
}
block := response.GetBlock(pom.topic, pom.partition)
if block == nil {
return ErrIncompleteResponse
}
switch block.Err {
case ErrNoError:
pom.offset = block.Offset
pom.metadata = block.Metadata
return nil
case ErrNotCoordinatorForConsumer:
if retries <= 0 {
return block.Err
}
if err := pom.selectBroker(); err != nil {
return err
}
return pom.fetchInitialOffset(retries - 1)
case ErrOffsetsLoadInProgress:
if retries <= 0 {
return block.Err
}
time.Sleep(pom.parent.conf.Metadata.Retry.Backoff)
return pom.fetchInitialOffset(retries - 1)
default:
return block.Err
}
}
func (pom *partitionOffsetManager) handleError(err error) {
cErr := &ConsumerError{
Topic: pom.topic,
Partition: pom.partition,
Err: err,
}
if pom.parent.conf.Consumer.Return.Errors {
pom.errors <- cErr
} else {
Logger.Println(cErr)
}
}
func (pom *partitionOffsetManager) Errors() <-chan *ConsumerError {
return pom.errors
}
func (pom *partitionOffsetManager) MarkOffset(offset int64, metadata string) {
pom.lock.Lock()
defer pom.lock.Unlock()
if offset > pom.offset {
pom.offset = offset
pom.metadata = metadata
pom.dirty = true
}
}
func (pom *partitionOffsetManager) updateCommitted(offset int64, metadata string) {
pom.lock.Lock()
defer pom.lock.Unlock()
if pom.offset == offset && pom.metadata == metadata {
pom.dirty = false
select {
case pom.clean <- none{}:
default:
}
}
}
func (pom *partitionOffsetManager) NextOffset() (int64, string) {
pom.lock.Lock()
defer pom.lock.Unlock()
if pom.offset >= 0 {
return pom.offset + 1, pom.metadata
}
return pom.parent.conf.Consumer.Offsets.Initial, ""
}
func (pom *partitionOffsetManager) AsyncClose() {
go func() {
pom.lock.Lock()
dirty := pom.dirty
pom.lock.Unlock()
if dirty {
<-pom.clean
}
close(pom.dying)
}()
}
func (pom *partitionOffsetManager) Close() error {
pom.AsyncClose()
var errors ConsumerErrors
for err := range pom.errors {
errors = append(errors, err)
}
if len(errors) > 0 {
return errors
}
return nil
}
// Broker Offset Manager
type brokerOffsetManager struct {
parent *offsetManager
broker *Broker
timer *time.Ticker
updateSubscriptions chan *partitionOffsetManager
subscriptions map[*partitionOffsetManager]none
refs int
}
func (om *offsetManager) newBrokerOffsetManager(broker *Broker) *brokerOffsetManager {
bom := &brokerOffsetManager{
parent: om,
broker: broker,
timer: time.NewTicker(om.conf.Consumer.Offsets.CommitInterval),
updateSubscriptions: make(chan *partitionOffsetManager),
subscriptions: make(map[*partitionOffsetManager]none),
}
go withRecover(bom.mainLoop)
return bom
}
func (bom *brokerOffsetManager) mainLoop() {
for {
select {
case <-bom.timer.C:
if len(bom.subscriptions) > 0 {
bom.flushToBroker()
}
case s, ok := <-bom.updateSubscriptions:
if !ok {
bom.timer.Stop()
return
}
if _, ok := bom.subscriptions[s]; ok {
delete(bom.subscriptions, s)
} else {
bom.subscriptions[s] = none{}
}
}
}
}
func (bom *brokerOffsetManager) flushToBroker() {
request := bom.constructRequest()
if request == nil {
return
}
response, err := bom.broker.CommitOffset(request)
if err != nil {
bom.abort(err)
return
}
for s := range bom.subscriptions {
if request.blocks[s.topic] == nil || request.blocks[s.topic][s.partition] == nil {
continue
}
var err KError
var ok bool
if response.Errors[s.topic] == nil {
s.handleError(ErrIncompleteResponse)
delete(bom.subscriptions, s)
s.rebalance <- none{}
continue
}
if err, ok = response.Errors[s.topic][s.partition]; !ok {
s.handleError(ErrIncompleteResponse)
delete(bom.subscriptions, s)
s.rebalance <- none{}
continue
}
switch err {
case ErrNoError:
block := request.blocks[s.topic][s.partition]
s.updateCommitted(block.offset, block.metadata)
break
case ErrUnknownTopicOrPartition, ErrNotLeaderForPartition, ErrLeaderNotAvailable:
delete(bom.subscriptions, s)
s.rebalance <- none{}
default:
s.handleError(err)
delete(bom.subscriptions, s)
s.rebalance <- none{}
}
}
}
func (bom *brokerOffsetManager) constructRequest() *OffsetCommitRequest {
r := &OffsetCommitRequest{
Version: 1,
ConsumerGroup: bom.parent.group,
}
for s := range bom.subscriptions {
s.lock.Lock()
if s.dirty {
r.AddBlock(s.topic, s.partition, s.offset, ReceiveTime, s.metadata)
}
s.lock.Unlock()
}
if len(r.blocks) > 0 {
return r
}
return nil
}
func (bom *brokerOffsetManager) abort(err error) {
_ = bom.broker.Close() // we don't care about the error this might return, we already have one
bom.parent.abandonBroker(bom)
for pom := range bom.subscriptions {
pom.handleError(err)
pom.rebalance <- none{}
}
for s := range bom.updateSubscriptions {
if _, ok := bom.subscriptions[s]; !ok {
s.handleError(err)
s.rebalance <- none{}
}
}
bom.subscriptions = make(map[*partitionOffsetManager]none)
}

View File

@ -0,0 +1,113 @@
package sarama
type offsetRequestBlock struct {
time int64
maxOffsets int32
}
func (r *offsetRequestBlock) encode(pe packetEncoder) error {
pe.putInt64(int64(r.time))
pe.putInt32(r.maxOffsets)
return nil
}
func (r *offsetRequestBlock) decode(pd packetDecoder) (err error) {
if r.time, err = pd.getInt64(); err != nil {
return err
}
if r.maxOffsets, err = pd.getInt32(); err != nil {
return err
}
return nil
}
type OffsetRequest struct {
blocks map[string]map[int32]*offsetRequestBlock
}
func (r *OffsetRequest) encode(pe packetEncoder) error {
pe.putInt32(-1) // replica ID is always -1 for clients
err := pe.putArrayLength(len(r.blocks))
if err != nil {
return err
}
for topic, partitions := range r.blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err = block.encode(pe); err != nil {
return err
}
}
}
return nil
}
func (r *OffsetRequest) decode(pd packetDecoder) error {
// Ignore replica ID
if _, err := pd.getInt32(); err != nil {
return err
}
blockCount, err := pd.getArrayLength()
if err != nil {
return err
}
if blockCount == 0 {
return nil
}
r.blocks = make(map[string]map[int32]*offsetRequestBlock)
for i := 0; i < blockCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
r.blocks[topic] = make(map[int32]*offsetRequestBlock)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
block := &offsetRequestBlock{}
if err := block.decode(pd); err != nil {
return err
}
r.blocks[topic][partition] = block
}
}
return nil
}
func (r *OffsetRequest) key() int16 {
return 2
}
func (r *OffsetRequest) version() int16 {
return 0
}
func (r *OffsetRequest) AddBlock(topic string, partitionID int32, time int64, maxOffsets int32) {
if r.blocks == nil {
r.blocks = make(map[string]map[int32]*offsetRequestBlock)
}
if r.blocks[topic] == nil {
r.blocks[topic] = make(map[int32]*offsetRequestBlock)
}
tmp := new(offsetRequestBlock)
tmp.time = time
tmp.maxOffsets = maxOffsets
r.blocks[topic][partitionID] = tmp
}

View File

@ -0,0 +1,130 @@
package sarama
type OffsetResponseBlock struct {
Err KError
Offsets []int64
}
func (r *OffsetResponseBlock) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
r.Err = KError(tmp)
r.Offsets, err = pd.getInt64Array()
return err
}
func (r *OffsetResponseBlock) encode(pe packetEncoder) (err error) {
pe.putInt16(int16(r.Err))
return pe.putInt64Array(r.Offsets)
}
type OffsetResponse struct {
Blocks map[string]map[int32]*OffsetResponseBlock
}
func (r *OffsetResponse) decode(pd packetDecoder) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks = make(map[string]map[int32]*OffsetResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
r.Blocks[name] = make(map[int32]*OffsetResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(OffsetResponseBlock)
err = block.decode(pd)
if err != nil {
return err
}
r.Blocks[name][id] = block
}
}
return nil
}
func (r *OffsetResponse) GetBlock(topic string, partition int32) *OffsetResponseBlock {
if r.Blocks == nil {
return nil
}
if r.Blocks[topic] == nil {
return nil
}
return r.Blocks[topic][partition]
}
/*
// [0 0 0 1 ntopics
0 8 109 121 95 116 111 112 105 99 topic
0 0 0 1 npartitions
0 0 0 0 id
0 0
0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 1
0 8 109 121 95 116 111 112
105 99 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1] <nil>
*/
func (r *OffsetResponse) encode(pe packetEncoder) (err error) {
if err = pe.putArrayLength(len(r.Blocks)); err != nil {
return err
}
for topic, partitions := range r.Blocks {
if err = pe.putString(topic); err != nil {
return err
}
if err = pe.putArrayLength(len(partitions)); err != nil {
return err
}
for partition, block := range partitions {
pe.putInt32(partition)
if err = block.encode(pe); err != nil {
return err
}
}
}
return nil
}
// testing API
func (r *OffsetResponse) AddTopicPartition(topic string, partition int32, offset int64) {
if r.Blocks == nil {
r.Blocks = make(map[string]map[int32]*OffsetResponseBlock)
}
byTopic, ok := r.Blocks[topic]
if !ok {
byTopic = make(map[int32]*OffsetResponseBlock)
r.Blocks[topic] = byTopic
}
byTopic[partition] = &OffsetResponseBlock{Offsets: []int64{offset}}
}

View File

@ -0,0 +1,45 @@
package sarama
// PacketDecoder is the interface providing helpers for reading with Kafka's encoding rules.
// Types implementing Decoder only need to worry about calling methods like GetString,
// not about how a string is represented in Kafka.
type packetDecoder interface {
// Primitives
getInt8() (int8, error)
getInt16() (int16, error)
getInt32() (int32, error)
getInt64() (int64, error)
getArrayLength() (int, error)
// Collections
getBytes() ([]byte, error)
getString() (string, error)
getInt32Array() ([]int32, error)
getInt64Array() ([]int64, error)
getStringArray() ([]string, error)
// Subsets
remaining() int
getSubset(length int) (packetDecoder, error)
// Stacks, see PushDecoder
push(in pushDecoder) error
pop() error
}
// PushDecoder is the interface for decoding fields like CRCs and lengths where the validity
// of the field depends on what is after it in the packet. Start them with PacketDecoder.Push() where
// the actual value is located in the packet, then PacketDecoder.Pop() them when all the bytes they
// depend upon have been decoded.
type pushDecoder interface {
// Saves the offset into the input buffer as the location to actually read the calculated value when able.
saveOffset(in int)
// Returns the length of data to reserve for the input of this encoder (eg 4 bytes for a CRC32).
reserveLength() int
// Indicates that all required data is now available to calculate and check the field.
// SaveOffset is guaranteed to have been called first. The implementation should read ReserveLength() bytes
// of data from the saved offset, and verify it based on the data between the saved offset and curOffset.
check(curOffset int, buf []byte) error
}

View File

@ -0,0 +1,42 @@
package sarama
// PacketEncoder is the interface providing helpers for writing with Kafka's encoding rules.
// Types implementing Encoder only need to worry about calling methods like PutString,
// not about how a string is represented in Kafka.
type packetEncoder interface {
// Primitives
putInt8(in int8)
putInt16(in int16)
putInt32(in int32)
putInt64(in int64)
putArrayLength(in int) error
// Collections
putBytes(in []byte) error
putRawBytes(in []byte) error
putString(in string) error
putStringArray(in []string) error
putInt32Array(in []int32) error
putInt64Array(in []int64) error
// Stacks, see PushEncoder
push(in pushEncoder)
pop() error
}
// PushEncoder is the interface for encoding fields like CRCs and lengths where the value
// of the field depends on what is encoded after it in the packet. Start them with PacketEncoder.Push() where
// the actual value is located in the packet, then PacketEncoder.Pop() them when all the bytes they
// depend upon have been written.
type pushEncoder interface {
// Saves the offset into the input buffer as the location to actually write the calculated value when able.
saveOffset(in int)
// Returns the length of data to reserve for the output of this encoder (eg 4 bytes for a CRC32).
reserveLength() int
// Indicates that all required data is now available to calculate and write the field.
// SaveOffset is guaranteed to have been called first. The implementation should write ReserveLength() bytes
// of data to the saved offset, based on the data between the saved offset and curOffset.
run(curOffset int, buf []byte) error
}

View File

@ -0,0 +1,123 @@
package sarama
import (
"hash"
"hash/fnv"
"math/rand"
"time"
)
// Partitioner is anything that, given a Kafka message and a number of partitions indexed [0...numPartitions-1],
// decides to which partition to send the message. RandomPartitioner, RoundRobinPartitioner and HashPartitioner are provided
// as simple default implementations.
type Partitioner interface {
// Partition takes a message and partition count and chooses a partition
Partition(message *ProducerMessage, numPartitions int32) (int32, error)
// RequiresConsistency indicates to the user of the partitioner whether the
// mapping of key->partition is consistent or not. Specifically, if a
// partitioner requires consistency then it must be allowed to choose from all
// partitions (even ones known to be unavailable), and its choice must be
// respected by the caller. The obvious example is the HashPartitioner.
RequiresConsistency() bool
}
// PartitionerConstructor is the type for a function capable of constructing new Partitioners.
type PartitionerConstructor func(topic string) Partitioner
type manualPartitioner struct{}
// NewManualPartitioner returns a Partitioner which uses the partition manually set in the provided
// ProducerMessage's Partition field as the partition to produce to.
func NewManualPartitioner(topic string) Partitioner {
return new(manualPartitioner)
}
func (p *manualPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
return message.Partition, nil
}
func (p *manualPartitioner) RequiresConsistency() bool {
return true
}
type randomPartitioner struct {
generator *rand.Rand
}
// NewRandomPartitioner returns a Partitioner which chooses a random partition each time.
func NewRandomPartitioner(topic string) Partitioner {
p := new(randomPartitioner)
p.generator = rand.New(rand.NewSource(time.Now().UTC().UnixNano()))
return p
}
func (p *randomPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
return int32(p.generator.Intn(int(numPartitions))), nil
}
func (p *randomPartitioner) RequiresConsistency() bool {
return false
}
type roundRobinPartitioner struct {
partition int32
}
// NewRoundRobinPartitioner returns a Partitioner which walks through the available partitions one at a time.
func NewRoundRobinPartitioner(topic string) Partitioner {
return &roundRobinPartitioner{}
}
func (p *roundRobinPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
if p.partition >= numPartitions {
p.partition = 0
}
ret := p.partition
p.partition++
return ret, nil
}
func (p *roundRobinPartitioner) RequiresConsistency() bool {
return false
}
type hashPartitioner struct {
random Partitioner
hasher hash.Hash32
}
// NewHashPartitioner returns a Partitioner which behaves as follows. If the message's key is nil, or fails to
// encode, then a random partition is chosen. Otherwise the FNV-1a hash of the encoded bytes of the message key
// is used, modulus the number of partitions. This ensures that messages with the same key always end up on the
// same partition.
func NewHashPartitioner(topic string) Partitioner {
p := new(hashPartitioner)
p.random = NewRandomPartitioner(topic)
p.hasher = fnv.New32a()
return p
}
func (p *hashPartitioner) Partition(message *ProducerMessage, numPartitions int32) (int32, error) {
if message.Key == nil {
return p.random.Partition(message, numPartitions)
}
bytes, err := message.Key.Encode()
if err != nil {
return -1, err
}
p.hasher.Reset()
_, err = p.hasher.Write(bytes)
if err != nil {
return -1, err
}
hash := int32(p.hasher.Sum32())
if hash < 0 {
hash = -hash
}
return hash % numPartitions, nil
}
func (p *hashPartitioner) RequiresConsistency() bool {
return true
}

View File

@ -0,0 +1,110 @@
package sarama
import (
"fmt"
"math"
)
type prepEncoder struct {
length int
}
// primitives
func (pe *prepEncoder) putInt8(in int8) {
pe.length++
}
func (pe *prepEncoder) putInt16(in int16) {
pe.length += 2
}
func (pe *prepEncoder) putInt32(in int32) {
pe.length += 4
}
func (pe *prepEncoder) putInt64(in int64) {
pe.length += 8
}
func (pe *prepEncoder) putArrayLength(in int) error {
if in > math.MaxInt32 {
return PacketEncodingError{fmt.Sprintf("array too long (%d)", in)}
}
pe.length += 4
return nil
}
// arrays
func (pe *prepEncoder) putBytes(in []byte) error {
pe.length += 4
if in == nil {
return nil
}
if len(in) > math.MaxInt32 {
return PacketEncodingError{fmt.Sprintf("byteslice too long (%d)", len(in))}
}
pe.length += len(in)
return nil
}
func (pe *prepEncoder) putRawBytes(in []byte) error {
if len(in) > math.MaxInt32 {
return PacketEncodingError{fmt.Sprintf("byteslice too long (%d)", len(in))}
}
pe.length += len(in)
return nil
}
func (pe *prepEncoder) putString(in string) error {
pe.length += 2
if len(in) > math.MaxInt16 {
return PacketEncodingError{fmt.Sprintf("string too long (%d)", len(in))}
}
pe.length += len(in)
return nil
}
func (pe *prepEncoder) putStringArray(in []string) error {
err := pe.putArrayLength(len(in))
if err != nil {
return err
}
for _, str := range in {
if err := pe.putString(str); err != nil {
return err
}
}
return nil
}
func (pe *prepEncoder) putInt32Array(in []int32) error {
err := pe.putArrayLength(len(in))
if err != nil {
return err
}
pe.length += 4 * len(in)
return nil
}
func (pe *prepEncoder) putInt64Array(in []int64) error {
err := pe.putArrayLength(len(in))
if err != nil {
return err
}
pe.length += 8 * len(in)
return nil
}
// stackable
func (pe *prepEncoder) push(in pushEncoder) {
pe.length += in.reserveLength()
}
func (pe *prepEncoder) pop() error {
return nil
}

View File

@ -0,0 +1,145 @@
package sarama
// RequiredAcks is used in Produce Requests to tell the broker how many replica acknowledgements
// it must see before responding. Any of the constants defined here are valid. On broker versions
// prior to 0.8.2.0 any other positive int16 is also valid (the broker will wait for that many
// acknowledgements) but in 0.8.2.0 and later this will raise an exception (it has been replaced
// by setting the `min.isr` value in the brokers configuration).
type RequiredAcks int16
const (
// NoResponse doesn't send any response, the TCP ACK is all you get.
NoResponse RequiredAcks = 0
// WaitForLocal waits for only the local commit to succeed before responding.
WaitForLocal RequiredAcks = 1
// WaitForAll waits for all replicas to commit before responding.
WaitForAll RequiredAcks = -1
)
type ProduceRequest struct {
RequiredAcks RequiredAcks
Timeout int32
msgSets map[string]map[int32]*MessageSet
}
func (p *ProduceRequest) encode(pe packetEncoder) error {
pe.putInt16(int16(p.RequiredAcks))
pe.putInt32(p.Timeout)
err := pe.putArrayLength(len(p.msgSets))
if err != nil {
return err
}
for topic, partitions := range p.msgSets {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
for id, msgSet := range partitions {
pe.putInt32(id)
pe.push(&lengthField{})
err = msgSet.encode(pe)
if err != nil {
return err
}
err = pe.pop()
if err != nil {
return err
}
}
}
return nil
}
func (p *ProduceRequest) decode(pd packetDecoder) error {
requiredAcks, err := pd.getInt16()
if err != nil {
return err
}
p.RequiredAcks = RequiredAcks(requiredAcks)
if p.Timeout, err = pd.getInt32(); err != nil {
return err
}
topicCount, err := pd.getArrayLength()
if err != nil {
return err
}
if topicCount == 0 {
return nil
}
p.msgSets = make(map[string]map[int32]*MessageSet)
for i := 0; i < topicCount; i++ {
topic, err := pd.getString()
if err != nil {
return err
}
partitionCount, err := pd.getArrayLength()
if err != nil {
return err
}
p.msgSets[topic] = make(map[int32]*MessageSet)
for j := 0; j < partitionCount; j++ {
partition, err := pd.getInt32()
if err != nil {
return err
}
messageSetSize, err := pd.getInt32()
if err != nil {
return err
}
msgSetDecoder, err := pd.getSubset(int(messageSetSize))
if err != nil {
return err
}
msgSet := &MessageSet{}
err = msgSet.decode(msgSetDecoder)
if err != nil {
return err
}
p.msgSets[topic][partition] = msgSet
}
}
return nil
}
func (p *ProduceRequest) key() int16 {
return 0
}
func (p *ProduceRequest) version() int16 {
return 0
}
func (p *ProduceRequest) AddMessage(topic string, partition int32, msg *Message) {
if p.msgSets == nil {
p.msgSets = make(map[string]map[int32]*MessageSet)
}
if p.msgSets[topic] == nil {
p.msgSets[topic] = make(map[int32]*MessageSet)
}
set := p.msgSets[topic][partition]
if set == nil {
set = new(MessageSet)
p.msgSets[topic][partition] = set
}
set.addMessage(msg)
}
func (p *ProduceRequest) AddSet(topic string, partition int32, set *MessageSet) {
if p.msgSets == nil {
p.msgSets = make(map[string]map[int32]*MessageSet)
}
if p.msgSets[topic] == nil {
p.msgSets[topic] = make(map[int32]*MessageSet)
}
p.msgSets[topic][partition] = set
}

View File

@ -0,0 +1,112 @@
package sarama
type ProduceResponseBlock struct {
Err KError
Offset int64
}
func (pr *ProduceResponseBlock) decode(pd packetDecoder) (err error) {
tmp, err := pd.getInt16()
if err != nil {
return err
}
pr.Err = KError(tmp)
pr.Offset, err = pd.getInt64()
if err != nil {
return err
}
return nil
}
type ProduceResponse struct {
Blocks map[string]map[int32]*ProduceResponseBlock
}
func (pr *ProduceResponse) decode(pd packetDecoder) (err error) {
numTopics, err := pd.getArrayLength()
if err != nil {
return err
}
pr.Blocks = make(map[string]map[int32]*ProduceResponseBlock, numTopics)
for i := 0; i < numTopics; i++ {
name, err := pd.getString()
if err != nil {
return err
}
numBlocks, err := pd.getArrayLength()
if err != nil {
return err
}
pr.Blocks[name] = make(map[int32]*ProduceResponseBlock, numBlocks)
for j := 0; j < numBlocks; j++ {
id, err := pd.getInt32()
if err != nil {
return err
}
block := new(ProduceResponseBlock)
err = block.decode(pd)
if err != nil {
return err
}
pr.Blocks[name][id] = block
}
}
return nil
}
func (pr *ProduceResponse) encode(pe packetEncoder) error {
err := pe.putArrayLength(len(pr.Blocks))
if err != nil {
return err
}
for topic, partitions := range pr.Blocks {
err = pe.putString(topic)
if err != nil {
return err
}
err = pe.putArrayLength(len(partitions))
if err != nil {
return err
}
for id, prb := range partitions {
pe.putInt32(id)
pe.putInt16(int16(prb.Err))
pe.putInt64(prb.Offset)
}
}
return nil
}
func (pr *ProduceResponse) GetBlock(topic string, partition int32) *ProduceResponseBlock {
if pr.Blocks == nil {
return nil
}
if pr.Blocks[topic] == nil {
return nil
}
return pr.Blocks[topic][partition]
}
// Testing API
func (pr *ProduceResponse) AddTopicPartition(topic string, partition int32, err KError) {
if pr.Blocks == nil {
pr.Blocks = make(map[string]map[int32]*ProduceResponseBlock)
}
byTopic, ok := pr.Blocks[topic]
if !ok {
byTopic = make(map[int32]*ProduceResponseBlock)
pr.Blocks[topic] = byTopic
}
byTopic[partition] = &ProduceResponseBlock{Err: err}
}

View File

@ -0,0 +1,158 @@
package sarama
import "time"
type partitionSet struct {
msgs []*ProducerMessage
setToSend *MessageSet
bufferBytes int
}
type produceSet struct {
parent *asyncProducer
msgs map[string]map[int32]*partitionSet
bufferBytes int
bufferCount int
}
func newProduceSet(parent *asyncProducer) *produceSet {
return &produceSet{
msgs: make(map[string]map[int32]*partitionSet),
parent: parent,
}
}
func (ps *produceSet) add(msg *ProducerMessage) error {
var err error
var key, val []byte
if msg.Key != nil {
if key, err = msg.Key.Encode(); err != nil {
return err
}
}
if msg.Value != nil {
if val, err = msg.Value.Encode(); err != nil {
return err
}
}
partitions := ps.msgs[msg.Topic]
if partitions == nil {
partitions = make(map[int32]*partitionSet)
ps.msgs[msg.Topic] = partitions
}
set := partitions[msg.Partition]
if set == nil {
set = &partitionSet{setToSend: new(MessageSet)}
partitions[msg.Partition] = set
}
set.msgs = append(set.msgs, msg)
set.setToSend.addMessage(&Message{Codec: CompressionNone, Key: key, Value: val})
size := producerMessageOverhead + len(key) + len(val)
set.bufferBytes += size
ps.bufferBytes += size
ps.bufferCount++
return nil
}
func (ps *produceSet) buildRequest() *ProduceRequest {
req := &ProduceRequest{
RequiredAcks: ps.parent.conf.Producer.RequiredAcks,
Timeout: int32(ps.parent.conf.Producer.Timeout / time.Millisecond),
}
for topic, partitionSet := range ps.msgs {
for partition, set := range partitionSet {
if ps.parent.conf.Producer.Compression == CompressionNone {
req.AddSet(topic, partition, set.setToSend)
} else {
// When compression is enabled, the entire set for each partition is compressed
// and sent as the payload of a single fake "message" with the appropriate codec
// set and no key. When the server sees a message with a compression codec, it
// decompresses the payload and treats the result as its message set.
payload, err := encode(set.setToSend)
if err != nil {
Logger.Println(err) // if this happens, it's basically our fault.
panic(err)
}
req.AddMessage(topic, partition, &Message{
Codec: ps.parent.conf.Producer.Compression,
Key: nil,
Value: payload,
})
}
}
}
return req
}
func (ps *produceSet) eachPartition(cb func(topic string, partition int32, msgs []*ProducerMessage)) {
for topic, partitionSet := range ps.msgs {
for partition, set := range partitionSet {
cb(topic, partition, set.msgs)
}
}
}
func (ps *produceSet) dropPartition(topic string, partition int32) []*ProducerMessage {
if ps.msgs[topic] == nil {
return nil
}
set := ps.msgs[topic][partition]
if set == nil {
return nil
}
ps.bufferBytes -= set.bufferBytes
ps.bufferCount -= len(set.msgs)
delete(ps.msgs[topic], partition)
return set.msgs
}
func (ps *produceSet) wouldOverflow(msg *ProducerMessage) bool {
switch {
// Would we overflow our maximum possible size-on-the-wire? 10KiB is arbitrary overhead for safety.
case ps.bufferBytes+msg.byteSize() >= int(MaxRequestSize-(10*1024)):
return true
// Would we overflow the size-limit of a compressed message-batch for this partition?
case ps.parent.conf.Producer.Compression != CompressionNone &&
ps.msgs[msg.Topic] != nil && ps.msgs[msg.Topic][msg.Partition] != nil &&
ps.msgs[msg.Topic][msg.Partition].bufferBytes+msg.byteSize() >= ps.parent.conf.Producer.MaxMessageBytes:
return true
// Would we overflow simply in number of messages?
case ps.parent.conf.Producer.Flush.MaxMessages > 0 && ps.bufferCount >= ps.parent.conf.Producer.Flush.MaxMessages:
return true
default:
return false
}
}
func (ps *produceSet) readyToFlush() bool {
switch {
// If we don't have any messages, nothing else matters
case ps.empty():
return false
// If all three config values are 0, we always flush as-fast-as-possible
case ps.parent.conf.Producer.Flush.Frequency == 0 && ps.parent.conf.Producer.Flush.Bytes == 0 && ps.parent.conf.Producer.Flush.Messages == 0:
return true
// If we've passed the message trigger-point
case ps.parent.conf.Producer.Flush.Messages > 0 && ps.bufferCount >= ps.parent.conf.Producer.Flush.Messages:
return true
// If we've passed the byte trigger-point
case ps.parent.conf.Producer.Flush.Bytes > 0 && ps.bufferBytes >= ps.parent.conf.Producer.Flush.Bytes:
return true
default:
return false
}
}
func (ps *produceSet) empty() bool {
return ps.bufferCount == 0
}

View File

@ -0,0 +1,254 @@
package sarama
import (
"encoding/binary"
"math"
)
type realDecoder struct {
raw []byte
off int
stack []pushDecoder
}
// primitives
func (rd *realDecoder) getInt8() (int8, error) {
if rd.remaining() < 1 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int8(rd.raw[rd.off])
rd.off++
return tmp, nil
}
func (rd *realDecoder) getInt16() (int16, error) {
if rd.remaining() < 2 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int16(binary.BigEndian.Uint16(rd.raw[rd.off:]))
rd.off += 2
return tmp, nil
}
func (rd *realDecoder) getInt32() (int32, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int32(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
return tmp, nil
}
func (rd *realDecoder) getInt64() (int64, error) {
if rd.remaining() < 8 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int64(binary.BigEndian.Uint64(rd.raw[rd.off:]))
rd.off += 8
return tmp, nil
}
func (rd *realDecoder) getArrayLength() (int, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
}
tmp := int(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
if tmp > rd.remaining() {
rd.off = len(rd.raw)
return -1, ErrInsufficientData
} else if tmp > 2*math.MaxUint16 {
return -1, PacketDecodingError{"invalid array length"}
}
return tmp, nil
}
// collections
func (rd *realDecoder) getBytes() ([]byte, error) {
tmp, err := rd.getInt32()
if err != nil {
return nil, err
}
n := int(tmp)
switch {
case n < -1:
return nil, PacketDecodingError{"invalid byteslice length"}
case n == -1:
return nil, nil
case n == 0:
return make([]byte, 0), nil
case n > rd.remaining():
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
tmpStr := rd.raw[rd.off : rd.off+n]
rd.off += n
return tmpStr, nil
}
func (rd *realDecoder) getString() (string, error) {
tmp, err := rd.getInt16()
if err != nil {
return "", err
}
n := int(tmp)
switch {
case n < -1:
return "", PacketDecodingError{"invalid string length"}
case n == -1:
return "", nil
case n == 0:
return "", nil
case n > rd.remaining():
rd.off = len(rd.raw)
return "", ErrInsufficientData
}
tmpStr := string(rd.raw[rd.off : rd.off+n])
rd.off += n
return tmpStr, nil
}
func (rd *realDecoder) getInt32Array() ([]int32, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
n := int(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
if rd.remaining() < 4*n {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
if n == 0 {
return nil, nil
}
if n < 0 {
return nil, PacketDecodingError{"invalid array length"}
}
ret := make([]int32, n)
for i := range ret {
ret[i] = int32(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
}
return ret, nil
}
func (rd *realDecoder) getInt64Array() ([]int64, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
n := int(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
if rd.remaining() < 8*n {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
if n == 0 {
return nil, nil
}
if n < 0 {
return nil, PacketDecodingError{"invalid array length"}
}
ret := make([]int64, n)
for i := range ret {
ret[i] = int64(binary.BigEndian.Uint64(rd.raw[rd.off:]))
rd.off += 8
}
return ret, nil
}
func (rd *realDecoder) getStringArray() ([]string, error) {
if rd.remaining() < 4 {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
n := int(binary.BigEndian.Uint32(rd.raw[rd.off:]))
rd.off += 4
if n == 0 {
return nil, nil
}
if n < 0 {
return nil, PacketDecodingError{"invalid array length"}
}
ret := make([]string, n)
for i := range ret {
if str, err := rd.getString(); err != nil {
return nil, err
} else {
ret[i] = str
}
}
return ret, nil
}
// subsets
func (rd *realDecoder) remaining() int {
return len(rd.raw) - rd.off
}
func (rd *realDecoder) getSubset(length int) (packetDecoder, error) {
if length < 0 {
return nil, PacketDecodingError{"invalid subset size"}
} else if length > rd.remaining() {
rd.off = len(rd.raw)
return nil, ErrInsufficientData
}
start := rd.off
rd.off += length
return &realDecoder{raw: rd.raw[start:rd.off]}, nil
}
// stacks
func (rd *realDecoder) push(in pushDecoder) error {
in.saveOffset(rd.off)
reserve := in.reserveLength()
if rd.remaining() < reserve {
rd.off = len(rd.raw)
return ErrInsufficientData
}
rd.stack = append(rd.stack, in)
rd.off += reserve
return nil
}
func (rd *realDecoder) pop() error {
// this is go's ugly pop pattern (the inverse of append)
in := rd.stack[len(rd.stack)-1]
rd.stack = rd.stack[:len(rd.stack)-1]
return in.check(rd.off, rd.raw)
}

View File

@ -0,0 +1,115 @@
package sarama
import "encoding/binary"
type realEncoder struct {
raw []byte
off int
stack []pushEncoder
}
// primitives
func (re *realEncoder) putInt8(in int8) {
re.raw[re.off] = byte(in)
re.off++
}
func (re *realEncoder) putInt16(in int16) {
binary.BigEndian.PutUint16(re.raw[re.off:], uint16(in))
re.off += 2
}
func (re *realEncoder) putInt32(in int32) {
binary.BigEndian.PutUint32(re.raw[re.off:], uint32(in))
re.off += 4
}
func (re *realEncoder) putInt64(in int64) {
binary.BigEndian.PutUint64(re.raw[re.off:], uint64(in))
re.off += 8
}
func (re *realEncoder) putArrayLength(in int) error {
re.putInt32(int32(in))
return nil
}
// collection
func (re *realEncoder) putRawBytes(in []byte) error {
copy(re.raw[re.off:], in)
re.off += len(in)
return nil
}
func (re *realEncoder) putBytes(in []byte) error {
if in == nil {
re.putInt32(-1)
return nil
}
re.putInt32(int32(len(in)))
copy(re.raw[re.off:], in)
re.off += len(in)
return nil
}
func (re *realEncoder) putString(in string) error {
re.putInt16(int16(len(in)))
copy(re.raw[re.off:], in)
re.off += len(in)
return nil
}
func (re *realEncoder) putStringArray(in []string) error {
err := re.putArrayLength(len(in))
if err != nil {
return err
}
for _, val := range in {
if err := re.putString(val); err != nil {
return err
}
}
return nil
}
func (re *realEncoder) putInt32Array(in []int32) error {
err := re.putArrayLength(len(in))
if err != nil {
return err
}
for _, val := range in {
re.putInt32(val)
}
return nil
}
func (re *realEncoder) putInt64Array(in []int64) error {
err := re.putArrayLength(len(in))
if err != nil {
return err
}
for _, val := range in {
re.putInt64(val)
}
return nil
}
// stacks
func (re *realEncoder) push(in pushEncoder) {
in.saveOffset(re.off)
re.off += in.reserveLength()
re.stack = append(re.stack, in)
}
func (re *realEncoder) pop() error {
// this is go's ugly pop pattern (the inverse of append)
in := re.stack[len(re.stack)-1]
re.stack = re.stack[:len(re.stack)-1]
return in.run(re.off, re.raw)
}

View File

@ -0,0 +1,112 @@
package sarama
import (
"encoding/binary"
"fmt"
"io"
)
type requestBody interface {
encoder
decoder
key() int16
version() int16
}
type request struct {
correlationID int32
clientID string
body requestBody
}
func (r *request) encode(pe packetEncoder) (err error) {
pe.push(&lengthField{})
pe.putInt16(r.body.key())
pe.putInt16(r.body.version())
pe.putInt32(r.correlationID)
err = pe.putString(r.clientID)
if err != nil {
return err
}
err = r.body.encode(pe)
if err != nil {
return err
}
return pe.pop()
}
func (r *request) decode(pd packetDecoder) (err error) {
var key int16
if key, err = pd.getInt16(); err != nil {
return err
}
var version int16
if version, err = pd.getInt16(); err != nil {
return err
}
if r.correlationID, err = pd.getInt32(); err != nil {
return err
}
r.clientID, err = pd.getString()
r.body = allocateBody(key, version)
if r.body == nil {
return PacketDecodingError{fmt.Sprintf("unknown request key (%d)", key)}
}
return r.body.decode(pd)
}
func decodeRequest(r io.Reader) (req *request, err error) {
lengthBytes := make([]byte, 4)
if _, err := io.ReadFull(r, lengthBytes); err != nil {
return nil, err
}
length := int32(binary.BigEndian.Uint32(lengthBytes))
if length <= 4 || length > MaxRequestSize {
return nil, PacketDecodingError{fmt.Sprintf("message of length %d too large or too small", length)}
}
encodedReq := make([]byte, length)
if _, err := io.ReadFull(r, encodedReq); err != nil {
return nil, err
}
req = &request{}
if err := decode(encodedReq, req); err != nil {
return nil, err
}
return req, nil
}
func allocateBody(key, version int16) requestBody {
switch key {
case 0:
return &ProduceRequest{}
case 1:
return &FetchRequest{}
case 2:
return &OffsetRequest{}
case 3:
return &MetadataRequest{}
case 8:
return &OffsetCommitRequest{Version: version}
case 9:
return &OffsetFetchRequest{}
case 10:
return &ConsumerMetadataRequest{}
case 11:
return &JoinGroupRequest{}
case 12:
return &HeartbeatRequest{}
case 13:
return &LeaveGroupRequest{}
case 14:
return &SyncGroupRequest{}
case 15:
return &DescribeGroupsRequest{}
case 16:
return &ListGroupsRequest{}
}
return nil
}

View File

@ -0,0 +1,21 @@
package sarama
import "fmt"
type responseHeader struct {
length int32
correlationID int32
}
func (r *responseHeader) decode(pd packetDecoder) (err error) {
r.length, err = pd.getInt32()
if err != nil {
return err
}
if r.length <= 4 || r.length > MaxResponseSize {
return PacketDecodingError{fmt.Sprintf("message of length %d too large or too small", r.length)}
}
r.correlationID, err = pd.getInt32()
return err
}

View File

@ -0,0 +1,47 @@
/*
Package sarama provides client libraries for the Kafka 0.8 protocol. The AsyncProducer object is the high-level
API for producing messages asynchronously; the SyncProducer provides a blocking API for the same purpose.
The Consumer object is the high-level API for consuming messages. The Client object provides metadata
management functionality that is shared between the higher-level objects.
For lower-level needs, the Broker and Request/Response objects permit precise control over each connection
and message sent on the wire.
The Request/Response objects and properties are mostly undocumented, as they line up exactly with the
protocol fields documented by Kafka at https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
*/
package sarama
import (
"io/ioutil"
"log"
)
// Logger is the instance of a StdLogger interface that Sarama writes connection
// management events to. By default it is set to discard all log messages via ioutil.Discard,
// but you can set it to redirect wherever you want.
var Logger StdLogger = log.New(ioutil.Discard, "[Sarama] ", log.LstdFlags)
// StdLogger is used to log error messages.
type StdLogger interface {
Print(v ...interface{})
Printf(format string, v ...interface{})
Println(v ...interface{})
}
// PanicHandler is called for recovering from panics spawned internally to the library (and thus
// not recoverable by the caller's goroutine). Defaults to nil, which means panics are not recovered.
var PanicHandler func(interface{})
// MaxRequestSize is the maximum size (in bytes) of any request that Sarama will attempt to send. Trying
// to send a request larger than this will result in an PacketEncodingError. The default of 100 MiB is aligned
// with Kafka's default `socket.request.max.bytes`, which is the largest request the broker will attempt
// to process.
var MaxRequestSize int32 = 100 * 1024 * 1024
// MaxResponseSize is the maximum size (in bytes) of any response that Sarama will attempt to parse. If
// a broker returns a response message larger than this value, Sarama will return a PacketDecodingError to
// protect the client from running out of memory. Please note that brokers do not have any natural limit on
// the size of responses they send. In particular, they can send arbitrarily large fetch responses to consumers
// (see https://issues.apache.org/jira/browse/KAFKA-2063).
var MaxResponseSize int32 = 100 * 1024 * 1024

View File

@ -0,0 +1,41 @@
package sarama
import (
"bytes"
"encoding/binary"
"github.com/golang/snappy"
)
var snappyMagic = []byte{130, 83, 78, 65, 80, 80, 89, 0}
// SnappyEncode encodes binary data
func snappyEncode(src []byte) []byte {
return snappy.Encode(nil, src)
}
// SnappyDecode decodes snappy data
func snappyDecode(src []byte) ([]byte, error) {
if bytes.Equal(src[:8], snappyMagic) {
var (
pos = uint32(16)
max = uint32(len(src))
dst = make([]byte, 0, len(src))
chunk []byte
err error
)
for pos < max {
size := binary.BigEndian.Uint32(src[pos : pos+4])
pos += 4
chunk, err = snappy.Decode(chunk, src[pos:pos+size])
if err != nil {
return nil, err
}
pos += size
dst = append(dst, chunk...)
}
return dst, nil
}
return snappy.Decode(nil, src)
}

View File

@ -0,0 +1,86 @@
package sarama
type SyncGroupRequest struct {
GroupId string
GenerationId int32
MemberId string
GroupAssignments map[string][]byte
}
func (r *SyncGroupRequest) encode(pe packetEncoder) error {
if err := pe.putString(r.GroupId); err != nil {
return err
}
pe.putInt32(r.GenerationId)
if err := pe.putString(r.MemberId); err != nil {
return err
}
if err := pe.putArrayLength(len(r.GroupAssignments)); err != nil {
return err
}
for memberId, memberAssignment := range r.GroupAssignments {
if err := pe.putString(memberId); err != nil {
return err
}
if err := pe.putBytes(memberAssignment); err != nil {
return err
}
}
return nil
}
func (r *SyncGroupRequest) decode(pd packetDecoder) (err error) {
if r.GroupId, err = pd.getString(); err != nil {
return
}
if r.GenerationId, err = pd.getInt32(); err != nil {
return
}
if r.MemberId, err = pd.getString(); err != nil {
return
}
n, err := pd.getArrayLength()
if err != nil {
return err
}
if n == 0 {
return nil
}
r.GroupAssignments = make(map[string][]byte)
for i := 0; i < n; i++ {
memberId, err := pd.getString()
if err != nil {
return err
}
memberAssignment, err := pd.getBytes()
if err != nil {
return err
}
r.GroupAssignments[memberId] = memberAssignment
}
return nil
}
func (r *SyncGroupRequest) key() int16 {
return 14
}
func (r *SyncGroupRequest) version() int16 {
return 0
}
func (r *SyncGroupRequest) AddGroupAssignment(memberId string, memberAssignment []byte) {
if r.GroupAssignments == nil {
r.GroupAssignments = make(map[string][]byte)
}
r.GroupAssignments[memberId] = memberAssignment
}

View File

@ -0,0 +1,22 @@
package sarama
type SyncGroupResponse struct {
Err KError
MemberAssignment []byte
}
func (r *SyncGroupResponse) encode(pe packetEncoder) error {
pe.putInt16(int16(r.Err))
return pe.putBytes(r.MemberAssignment)
}
func (r *SyncGroupResponse) decode(pd packetDecoder) (err error) {
if kerr, err := pd.getInt16(); err != nil {
return err
} else {
r.Err = KError(kerr)
}
r.MemberAssignment, err = pd.getBytes()
return
}

View File

@ -0,0 +1,95 @@
package sarama
import "sync"
// SyncProducer publishes Kafka messages. It routes messages to the correct broker, refreshing metadata as appropriate,
// and parses responses for errors. You must call Close() on a producer to avoid leaks, it may not be garbage-collected automatically when
// it passes out of scope.
type SyncProducer interface {
// SendMessage produces a given message, and returns only when it either has
// succeeded or failed to produce. It will return the partition and the offset
// of the produced message, or an error if the message failed to produce.
SendMessage(msg *ProducerMessage) (partition int32, offset int64, err error)
// Close shuts down the producer and flushes any messages it may have buffered.
// You must call this function before a producer object passes out of scope, as
// it may otherwise leak memory. You must call this before calling Close on the
// underlying client.
Close() error
}
type syncProducer struct {
producer *asyncProducer
wg sync.WaitGroup
}
// NewSyncProducer creates a new SyncProducer using the given broker addresses and configuration.
func NewSyncProducer(addrs []string, config *Config) (SyncProducer, error) {
p, err := NewAsyncProducer(addrs, config)
if err != nil {
return nil, err
}
return newSyncProducerFromAsyncProducer(p.(*asyncProducer)), nil
}
// NewSyncProducerFromClient creates a new SyncProducer using the given client. It is still
// necessary to call Close() on the underlying client when shutting down this producer.
func NewSyncProducerFromClient(client Client) (SyncProducer, error) {
p, err := NewAsyncProducerFromClient(client)
if err != nil {
return nil, err
}
return newSyncProducerFromAsyncProducer(p.(*asyncProducer)), nil
}
func newSyncProducerFromAsyncProducer(p *asyncProducer) *syncProducer {
p.conf.Producer.Return.Successes = true
p.conf.Producer.Return.Errors = true
sp := &syncProducer{producer: p}
sp.wg.Add(2)
go withRecover(sp.handleSuccesses)
go withRecover(sp.handleErrors)
return sp
}
func (sp *syncProducer) SendMessage(msg *ProducerMessage) (partition int32, offset int64, err error) {
oldMetadata := msg.Metadata
defer func() {
msg.Metadata = oldMetadata
}()
expectation := make(chan error, 1)
msg.Metadata = expectation
sp.producer.Input() <- msg
if err := <-expectation; err != nil {
return -1, -1, err
}
return msg.Partition, msg.Offset, nil
}
func (sp *syncProducer) handleSuccesses() {
defer sp.wg.Done()
for msg := range sp.producer.Successes() {
expectation := msg.Metadata.(chan error)
expectation <- nil
}
}
func (sp *syncProducer) handleErrors() {
defer sp.wg.Done()
for err := range sp.producer.Errors() {
expectation := err.Msg.Metadata.(chan error)
expectation <- err.Err
}
}
func (sp *syncProducer) Close() error {
sp.producer.AsyncClose()
sp.wg.Wait()
return nil
}

View File

@ -0,0 +1,10 @@
# Sarama tools
This folder contains applications that are useful for exploration of your Kafka cluster, or instrumentation.
Some of these tools mirror tools that ship with Kafka, but these tools won't require installing the JVM to function.
- [kafka-console-producer](./kafka-console-producer): a command line tool to produce a single message to your Kafka custer.
- [kafka-console-partitionconsumer](./kafka-console-partitionconsumer): (deprecated) a command line tool to consume a single partition of a topic on your Kafka cluster.
- [kafka-console-consumer](./kafka-console-consumer): a command line tool to consume arbitrary partitions of a topic on your Kafka cluster.
To install all tools, run `go get github.com/Shopify/sarama/tools/...`

View File

@ -0,0 +1,2 @@
kafka-console-consumer
kafka-console-consumer.test

View File

@ -0,0 +1,29 @@
# kafka-console-consumer
A simple command line tool to consume partitions of a topic and print the
messages on the standard output.
### Installation
go get github.com/Shopify/sarama/tools/kafka-console-consumer
### Usage
# Minimum invocation
kafka-console-consumer -topic=test -brokers=kafka1:9092
# It will pick up a KAFKA_PEERS environment variable
export KAFKA_PEERS=kafka1:9092,kafka2:9092,kafka3:9092
kafka-console-consumer -topic=test
# You can specify the offset you want to start at. It can be either
# `oldest`, `newest`. The default is `newest`.
kafka-console-consumer -topic=test -offset=oldest
kafka-console-consumer -topic=test -offset=newest
# You can specify the partition(s) you want to consume as a comma-separated
# list. The default is `all`.
kafka-console-consumer -topic=test -partitions=1,2,3
# Display all command line options
kafka-console-consumer -help

View File

@ -0,0 +1,145 @@
package main
import (
"flag"
"fmt"
"log"
"os"
"os/signal"
"strconv"
"strings"
"sync"
"github.com/Shopify/sarama"
)
var (
brokerList = flag.String("brokers", os.Getenv("KAFKA_PEERS"), "The comma separated list of brokers in the Kafka cluster")
topic = flag.String("topic", "", "REQUIRED: the topic to consume")
partitions = flag.String("partitions", "all", "The partitions to consume, can be 'all' or comma-separated numbers")
offset = flag.String("offset", "newest", "The offset to start with. Can be `oldest`, `newest`")
verbose = flag.Bool("verbose", false, "Whether to turn on sarama logging")
bufferSize = flag.Int("buffer-size", 256, "The buffer size of the message channel.")
logger = log.New(os.Stderr, "", log.LstdFlags)
)
func main() {
flag.Parse()
if *brokerList == "" {
printUsageErrorAndExit("You have to provide -brokers as a comma-separated list, or set the KAFKA_PEERS environment variable.")
}
if *topic == "" {
printUsageErrorAndExit("-topic is required")
}
if *verbose {
sarama.Logger = logger
}
var initialOffset int64
switch *offset {
case "oldest":
initialOffset = sarama.OffsetOldest
case "newest":
initialOffset = sarama.OffsetNewest
default:
printUsageErrorAndExit("-offset should be `oldest` or `newest`")
}
c, err := sarama.NewConsumer(strings.Split(*brokerList, ","), nil)
if err != nil {
printErrorAndExit(69, "Failed to start consumer: %s", err)
}
partitionList, err := getPartitions(c)
if err != nil {
printErrorAndExit(69, "Failed to get the list of partitions: %s", err)
}
var (
messages = make(chan *sarama.ConsumerMessage, *bufferSize)
closing = make(chan struct{})
wg sync.WaitGroup
)
go func() {
signals := make(chan os.Signal, 1)
signal.Notify(signals, os.Kill, os.Interrupt)
<-signals
logger.Println("Initiating shutdown of consumer...")
close(closing)
}()
for _, partition := range partitionList {
pc, err := c.ConsumePartition(*topic, partition, initialOffset)
if err != nil {
printErrorAndExit(69, "Failed to start consumer for partition %d: %s", partition, err)
}
go func(pc sarama.PartitionConsumer) {
<-closing
pc.AsyncClose()
}(pc)
wg.Add(1)
go func(pc sarama.PartitionConsumer) {
defer wg.Done()
for message := range pc.Messages() {
messages <- message
}
}(pc)
}
go func() {
for msg := range messages {
fmt.Printf("Partition:\t%d\n", msg.Partition)
fmt.Printf("Offset:\t%d\n", msg.Offset)
fmt.Printf("Key:\t%s\n", string(msg.Key))
fmt.Printf("Value:\t%s\n", string(msg.Value))
fmt.Println()
}
}()
wg.Wait()
logger.Println("Done consuming topic", *topic)
close(messages)
if err := c.Close(); err != nil {
logger.Println("Failed to close consumer: ", err)
}
}
func getPartitions(c sarama.Consumer) ([]int32, error) {
if *partitions == "all" {
return c.Partitions(*topic)
}
tmp := strings.Split(*partitions, ",")
var pList []int32
for i := range tmp {
val, err := strconv.ParseInt(tmp[i], 10, 32)
if err != nil {
return nil, err
}
pList = append(pList, int32(val))
}
return pList, nil
}
func printErrorAndExit(code int, format string, values ...interface{}) {
fmt.Fprintf(os.Stderr, "ERROR: %s\n", fmt.Sprintf(format, values...))
fmt.Fprintln(os.Stderr)
os.Exit(code)
}
func printUsageErrorAndExit(format string, values ...interface{}) {
fmt.Fprintf(os.Stderr, "ERROR: %s\n", fmt.Sprintf(format, values...))
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "Available command line options:")
flag.PrintDefaults()
os.Exit(64)
}

View File

@ -0,0 +1,2 @@
kafka-console-partitionconsumer
kafka-console-partitionconsumer.test

View File

@ -0,0 +1,28 @@
# kafka-console-partitionconsumer
NOTE: this tool is deprecated in favour of the more general and more powerful
`kafka-console-consumer`.
A simple command line tool to consume a partition of a topic and print the messages
on the standard output.
### Installation
go get github.com/Shopify/sarama/tools/kafka-console-partitionconsumer
### Usage
# Minimum invocation
kafka-console-partitionconsumer -topic=test -partition=4 -brokers=kafka1:9092
# It will pick up a KAFKA_PEERS environment variable
export KAFKA_PEERS=kafka1:9092,kafka2:9092,kafka3:9092
kafka-console-partitionconsumer -topic=test -partition=4
# You can specify the offset you want to start at. It can be either
# `oldest`, `newest`, or a specific offset number
kafka-console-partitionconsumer -topic=test -partition=3 -offset=oldest
kafka-console-partitionconsumer -topic=test -partition=2 -offset=1337
# Display all command line options
kafka-console-partitionconsumer -help

View File

@ -0,0 +1,102 @@
package main
import (
"flag"
"fmt"
"log"
"os"
"os/signal"
"strconv"
"strings"
"github.com/Shopify/sarama"
)
var (
brokerList = flag.String("brokers", os.Getenv("KAFKA_PEERS"), "The comma separated list of brokers in the Kafka cluster")
topic = flag.String("topic", "", "REQUIRED: the topic to consume")
partition = flag.Int("partition", -1, "REQUIRED: the partition to consume")
offset = flag.String("offset", "newest", "The offset to start with. Can be `oldest`, `newest`, or an actual offset")
verbose = flag.Bool("verbose", false, "Whether to turn on sarama logging")
logger = log.New(os.Stderr, "", log.LstdFlags)
)
func main() {
flag.Parse()
if *brokerList == "" {
printUsageErrorAndExit("You have to provide -brokers as a comma-separated list, or set the KAFKA_PEERS environment variable.")
}
if *topic == "" {
printUsageErrorAndExit("-topic is required")
}
if *partition == -1 {
printUsageErrorAndExit("-partition is required")
}
if *verbose {
sarama.Logger = logger
}
var (
initialOffset int64
offsetError error
)
switch *offset {
case "oldest":
initialOffset = sarama.OffsetOldest
case "newest":
initialOffset = sarama.OffsetNewest
default:
initialOffset, offsetError = strconv.ParseInt(*offset, 10, 64)
}
if offsetError != nil {
printUsageErrorAndExit("Invalid initial offset: %s", *offset)
}
c, err := sarama.NewConsumer(strings.Split(*brokerList, ","), nil)
if err != nil {
printErrorAndExit(69, "Failed to start consumer: %s", err)
}
pc, err := c.ConsumePartition(*topic, int32(*partition), initialOffset)
if err != nil {
printErrorAndExit(69, "Failed to start partition consumer: %s", err)
}
go func() {
signals := make(chan os.Signal, 1)
signal.Notify(signals, os.Kill, os.Interrupt)
<-signals
pc.AsyncClose()
}()
for msg := range pc.Messages() {
fmt.Printf("Offset:\t%d\n", msg.Offset)
fmt.Printf("Key:\t%s\n", string(msg.Key))
fmt.Printf("Value:\t%s\n", string(msg.Value))
fmt.Println()
}
if err := c.Close(); err != nil {
logger.Println("Failed to close consumer: ", err)
}
}
func printErrorAndExit(code int, format string, values ...interface{}) {
fmt.Fprintf(os.Stderr, "ERROR: %s\n", fmt.Sprintf(format, values...))
fmt.Fprintln(os.Stderr)
os.Exit(code)
}
func printUsageErrorAndExit(format string, values ...interface{}) {
fmt.Fprintf(os.Stderr, "ERROR: %s\n", fmt.Sprintf(format, values...))
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "Available command line options:")
flag.PrintDefaults()
os.Exit(64)
}

View File

@ -0,0 +1,2 @@
kafka-console-producer
kafka-console-producer.test

View File

@ -0,0 +1,34 @@
# kafka-console-producer
A simple command line tool to produce a single message to Kafka.
### Installation
go get github.com/Shopify/sarama/tools/kafka-console-producer
### Usage
# Minimum invocation
kafka-console-producer -topic=test -value=value -brokers=kafka1:9092
# It will pick up a KAFKA_PEERS environment variable
export KAFKA_PEERS=kafka1:9092,kafka2:9092,kafka3:9092
kafka-console-producer -topic=test -value=value
# It will read the value from stdin by using pipes
echo "hello world" | kafka-console-producer -topic=test
# Specify a key:
echo "hello world" | kafka-console-producer -topic=test -key=key
# Partitioning: by default, kafka-console-producer will partition as follows:
# - manual partitioning if a -partition is provided
# - hash partitioning by key if a -key is provided
# - random partioning otherwise.
#
# You can override this using the -partitioner argument:
echo "hello world" | kafka-console-producer -topic=test -key=key -partitioner=random
# Display all command line options
kafka-console-producer -help

View File

@ -0,0 +1,118 @@
package main
import (
"flag"
"fmt"
"io/ioutil"
"log"
"os"
"strings"
"github.com/Shopify/sarama"
)
var (
brokerList = flag.String("brokers", os.Getenv("KAFKA_PEERS"), "The comma separated list of brokers in the Kafka cluster. You can also set the KAFKA_PEERS environment variable")
topic = flag.String("topic", "", "REQUIRED: the topic to produce to")
key = flag.String("key", "", "The key of the message to produce. Can be empty.")
value = flag.String("value", "", "REQUIRED: the value of the message to produce. You can also provide the value on stdin.")
partitioner = flag.String("partitioner", "", "The partitioning scheme to use. Can be `hash`, `manual`, or `random`")
partition = flag.Int("partition", -1, "The partition to produce to.")
verbose = flag.Bool("verbose", false, "Turn on sarama logging to stderr")
silent = flag.Bool("silent", false, "Turn off printing the message's topic, partition, and offset to stdout")
logger = log.New(os.Stderr, "", log.LstdFlags)
)
func main() {
flag.Parse()
if *brokerList == "" {
printUsageErrorAndExit("no -brokers specified. Alternatively, set the KAFKA_PEERS environment variable")
}
if *topic == "" {
printUsageErrorAndExit("no -topic specified")
}
if *verbose {
sarama.Logger = logger
}
config := sarama.NewConfig()
config.Producer.RequiredAcks = sarama.WaitForAll
switch *partitioner {
case "":
if *partition >= 0 {
config.Producer.Partitioner = sarama.NewManualPartitioner
} else {
config.Producer.Partitioner = sarama.NewHashPartitioner
}
case "hash":
config.Producer.Partitioner = sarama.NewHashPartitioner
case "random":
config.Producer.Partitioner = sarama.NewRandomPartitioner
case "manual":
config.Producer.Partitioner = sarama.NewManualPartitioner
if *partition == -1 {
printUsageErrorAndExit("-partition is required when partitioning manually")
}
default:
printUsageErrorAndExit(fmt.Sprintf("Partitioner %s not supported.", *partitioner))
}
message := &sarama.ProducerMessage{Topic: *topic, Partition: int32(*partition)}
if *key != "" {
message.Key = sarama.StringEncoder(*key)
}
if *value != "" {
message.Value = sarama.StringEncoder(*value)
} else if stdinAvailable() {
bytes, err := ioutil.ReadAll(os.Stdin)
if err != nil {
printErrorAndExit(66, "Failed to read data from the standard input: %s", err)
}
message.Value = sarama.ByteEncoder(bytes)
} else {
printUsageErrorAndExit("-value is required, or you have to provide the value on stdin")
}
producer, err := sarama.NewSyncProducer(strings.Split(*brokerList, ","), config)
if err != nil {
printErrorAndExit(69, "Failed to open Kafka producer: %s", err)
}
defer func() {
if err := producer.Close(); err != nil {
logger.Println("Failed to close Kafka producer cleanly:", err)
}
}()
partition, offset, err := producer.SendMessage(message)
if err != nil {
printErrorAndExit(69, "Failed to produce message: %s", err)
} else if !*silent {
fmt.Printf("topic=%s\tpartition=%d\toffset=%d\n", *topic, partition, offset)
}
}
func printErrorAndExit(code int, format string, values ...interface{}) {
fmt.Fprintf(os.Stderr, "ERROR: %s\n", fmt.Sprintf(format, values...))
fmt.Fprintln(os.Stderr)
os.Exit(code)
}
func printUsageErrorAndExit(message string) {
fmt.Fprintln(os.Stderr, "ERROR:", message)
fmt.Fprintln(os.Stderr)
fmt.Fprintln(os.Stderr, "Available command line options:")
flag.PrintDefaults()
os.Exit(64)
}
func stdinAvailable() bool {
stat, _ := os.Stdin.Stat()
return (stat.Mode() & os.ModeCharDevice) == 0
}

View File

@ -0,0 +1,89 @@
package sarama
import "sort"
type none struct{}
// make []int32 sortable so we can sort partition numbers
type int32Slice []int32
func (slice int32Slice) Len() int {
return len(slice)
}
func (slice int32Slice) Less(i, j int) bool {
return slice[i] < slice[j]
}
func (slice int32Slice) Swap(i, j int) {
slice[i], slice[j] = slice[j], slice[i]
}
func dupeAndSort(input []int32) []int32 {
ret := make([]int32, 0, len(input))
for _, val := range input {
ret = append(ret, val)
}
sort.Sort(int32Slice(ret))
return ret
}
func withRecover(fn func()) {
defer func() {
handler := PanicHandler
if handler != nil {
if err := recover(); err != nil {
handler(err)
}
}
}()
fn()
}
func safeAsyncClose(b *Broker) {
tmp := b // local var prevents clobbering in goroutine
go withRecover(func() {
if connected, _ := tmp.Connected(); connected {
if err := tmp.Close(); err != nil {
Logger.Println("Error closing broker", tmp.ID(), ":", err)
}
}
})
}
// Encoder is a simple interface for any type that can be encoded as an array of bytes
// in order to be sent as the key or value of a Kafka message. Length() is provided as an
// optimization, and must return the same as len() on the result of Encode().
type Encoder interface {
Encode() ([]byte, error)
Length() int
}
// make strings and byte slices encodable for convenience so they can be used as keys
// and/or values in kafka messages
// StringEncoder implements the Encoder interface for Go strings so that they can be used
// as the Key or Value in a ProducerMessage.
type StringEncoder string
func (s StringEncoder) Encode() ([]byte, error) {
return []byte(s), nil
}
func (s StringEncoder) Length() int {
return len(s)
}
// ByteEncoder implements the Encoder interface for Go byte slices so that they can be used
// as the Key or Value in a ProducerMessage.
type ByteEncoder []byte
func (b ByteEncoder) Encode() ([]byte, error) {
return b, nil
}
func (b ByteEncoder) Length() int {
return len(b)
}

View File

@ -0,0 +1,22 @@
#!/bin/sh
set -ex
# Launch and wait for toxiproxy
${REPOSITORY_ROOT}/vagrant/run_toxiproxy.sh &
while ! nc -q 1 localhost 2181 </dev/null; do echo "Waiting"; sleep 1; done
while ! nc -q 1 localhost 9092 </dev/null; do echo "Waiting"; sleep 1; done
# Launch and wait for Zookeeper
for i in 1 2 3 4 5; do
KAFKA_PORT=`expr $i + 9090`
cd ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT} && bin/zookeeper-server-start.sh -daemon config/zookeeper.properties
done
while ! nc -q 1 localhost 21805 </dev/null; do echo "Waiting"; sleep 1; done
# Launch and wait for Kafka
for i in 1 2 3 4 5; do
KAFKA_PORT=`expr $i + 9090`
cd ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT} && bin/kafka-server-start.sh -daemon config/server.properties
done
while ! nc -q 1 localhost 29095 </dev/null; do echo "Waiting"; sleep 1; done

View File

@ -0,0 +1,8 @@
#!/bin/sh
set -ex
cd ${KAFKA_INSTALL_ROOT}/kafka-9092
bin/kafka-topics.sh --create --partitions 1 --replication-factor 3 --topic test.1 --zookeeper localhost:2181
bin/kafka-topics.sh --create --partitions 4 --replication-factor 3 --topic test.4 --zookeeper localhost:2181
bin/kafka-topics.sh --create --partitions 64 --replication-factor 3 --topic test.64 --zookeeper localhost:2181

View File

@ -0,0 +1,49 @@
#!/bin/sh
set -ex
TOXIPROXY_VERSION=1.0.3
mkdir -p ${KAFKA_INSTALL_ROOT}
if [ ! -f ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_VERSION}.tgz ]; then
wget --quiet http://apache.mirror.gtcomm.net/kafka/${KAFKA_VERSION}/kafka_2.10-${KAFKA_VERSION}.tgz -O ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_VERSION}.tgz
fi
if [ ! -f ${KAFKA_INSTALL_ROOT}/toxiproxy-${TOXIPROXY_VERSION} ]; then
wget --quiet https://github.com/Shopify/toxiproxy/releases/download/v${TOXIPROXY_VERSION}/toxiproxy-linux-amd64 -O ${KAFKA_INSTALL_ROOT}/toxiproxy-${TOXIPROXY_VERSION}
chmod +x ${KAFKA_INSTALL_ROOT}/toxiproxy-${TOXIPROXY_VERSION}
fi
rm -f ${KAFKA_INSTALL_ROOT}/toxiproxy
ln -s ${KAFKA_INSTALL_ROOT}/toxiproxy-${TOXIPROXY_VERSION} ${KAFKA_INSTALL_ROOT}/toxiproxy
for i in 1 2 3 4 5; do
ZK_PORT=`expr $i + 2180`
ZK_PORT_REAL=`expr $i + 21800`
KAFKA_PORT=`expr $i + 9090`
KAFKA_PORT_REAL=`expr $i + 29090`
# unpack kafka
mkdir -p ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}
tar xzf ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_VERSION}.tgz -C ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT} --strip-components 1
# broker configuration
cp ${REPOSITORY_ROOT}/vagrant/server.properties ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/
sed -i s/KAFKAID/${KAFKA_PORT}/g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/server.properties
sed -i s/KAFKAPORT/${KAFKA_PORT_REAL}/g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/server.properties
sed -i s/KAFKA_HOSTNAME/${KAFKA_HOSTNAME}/g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/server.properties
sed -i s/ZK_PORT/${ZK_PORT}/g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/server.properties
KAFKA_DATADIR="${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/data"
mkdir -p ${KAFKA_DATADIR}
sed -i s#KAFKA_DATADIR#${KAFKA_DATADIR}#g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/server.properties
# zookeeper configuration
cp ${REPOSITORY_ROOT}/vagrant/zookeeper.properties ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/
sed -i s/KAFKAID/${KAFKA_PORT}/g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/zookeeper.properties
sed -i s/ZK_PORT/${ZK_PORT_REAL}/g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/zookeeper.properties
ZK_DATADIR="${KAFKA_INSTALL_ROOT}/zookeeper-${ZK_PORT}"
mkdir -p ${ZK_DATADIR}
sed -i s#ZK_DATADIR#${ZK_DATADIR}#g ${KAFKA_INSTALL_ROOT}/kafka-${KAFKA_PORT}/config/zookeeper.properties
echo $i > ${KAFKA_INSTALL_ROOT}/zookeeper-${ZK_PORT}/myid
done

View File

@ -0,0 +1,5 @@
start on started zookeeper-ZK_PORT
stop on stopping zookeeper-ZK_PORT
pre-start exec sleep 2
exec /opt/kafka-KAFKAID/bin/kafka-server-start.sh /opt/kafka-KAFKAID/config/server.properties

View File

@ -0,0 +1,15 @@
#!/bin/sh
set -ex
apt-get update
yes | apt-get install default-jre
export KAFKA_INSTALL_ROOT=/opt
export KAFKA_HOSTNAME=192.168.100.67
export KAFKA_VERSION=0.9.0.0
export REPOSITORY_ROOT=/vagrant
sh /vagrant/vagrant/install_cluster.sh
sh /vagrant/vagrant/setup_services.sh
sh /vagrant/vagrant/create_topics.sh

View File

@ -0,0 +1,22 @@
#!/bin/sh
set -ex
${KAFKA_INSTALL_ROOT}/toxiproxy -port 8474 -host 0.0.0.0 &
PID=$!
while ! nc -q 1 localhost 8474 </dev/null; do echo "Waiting"; sleep 1; done
wget -O/dev/null -S --post-data='{"name":"zk1", "upstream":"localhost:21801", "listen":"0.0.0.0:2181"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"zk2", "upstream":"localhost:21802", "listen":"0.0.0.0:2182"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"zk3", "upstream":"localhost:21803", "listen":"0.0.0.0:2183"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"zk4", "upstream":"localhost:21804", "listen":"0.0.0.0:2184"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"zk5", "upstream":"localhost:21805", "listen":"0.0.0.0:2185"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"kafka1", "upstream":"localhost:29091", "listen":"0.0.0.0:9091"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"kafka2", "upstream":"localhost:29092", "listen":"0.0.0.0:9092"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"kafka3", "upstream":"localhost:29093", "listen":"0.0.0.0:9093"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"kafka4", "upstream":"localhost:29094", "listen":"0.0.0.0:9094"}' localhost:8474/proxies
wget -O/dev/null -S --post-data='{"name":"kafka5", "upstream":"localhost:29095", "listen":"0.0.0.0:9095"}' localhost:8474/proxies
wait $PID

View File

@ -0,0 +1,127 @@
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# see kafka.server.KafkaConfig for additional details and defaults
############################# Server Basics #############################
# The id of the broker. This must be set to a unique integer for each broker.
broker.id=KAFKAID
reserved.broker.max.id=10000
############################# Socket Server Settings #############################
# The port the socket server listens on
port=KAFKAPORT
# Hostname the broker will bind to. If not set, the server will bind to all interfaces
host.name=localhost
# Hostname the broker will advertise to producers and consumers. If not set, it uses the
# value for "host.name" if configured. Otherwise, it will use the value returned from
# java.net.InetAddress.getCanonicalHostName().
advertised.host.name=KAFKA_HOSTNAME
advertised.port=KAFKAID
# The port to publish to ZooKeeper for clients to use. If this is not set,
# it will publish the same port that the broker binds to.
# advertised.port=<port accessible by clients>
# The number of threads handling network requests
num.network.threads=2
# The number of threads doing disk I/O
num.io.threads=8
# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=1048576
# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=1048576
# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600
############################# Log Basics #############################
# A comma seperated list of directories under which to store log files
log.dirs=KAFKA_DATADIR
# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=2
# Create new topics with a replication factor of 2 so failover can be tested
# more easily.
default.replication.factor=2
auto.create.topics.enable=false
delete.topic.enable=true
############################# Log Flush Policy #############################
# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
# 1. Durability: Unflushed data may be lost if you are not using replication.
# 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
# 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.
# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000
# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000
############################# Log Retention Policy #############################
# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.
# The minimum age of a log file to be eligible for deletion
log.retention.hours=168
# A size-based retention policy for logs. Segments are pruned from the log as long as the remaining
# segments don't drop below log.retention.bytes.
log.retention.bytes=268435456
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=268435456
# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=60000
# By default the log cleaner is disabled and the log retention policy will default to just delete segments after their retention expires.
# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
log.cleaner.enable=false
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:ZK_PORT
# Timeout in ms for connecting to zookeeper
zookeeper.session.timeout.ms=3000
zookeeper.connection.timeout.ms=3000

View File

@ -0,0 +1,29 @@
#!/bin/sh
set -ex
stop toxiproxy || true
cp ${REPOSITORY_ROOT}/vagrant/toxiproxy.conf /etc/init/toxiproxy.conf
cp ${REPOSITORY_ROOT}/vagrant/run_toxiproxy.sh ${KAFKA_INSTALL_ROOT}/
start toxiproxy
for i in 1 2 3 4 5; do
ZK_PORT=`expr $i + 2180`
KAFKA_PORT=`expr $i + 9090`
stop zookeeper-${ZK_PORT} || true
# set up zk service
cp ${REPOSITORY_ROOT}/vagrant/zookeeper.conf /etc/init/zookeeper-${ZK_PORT}.conf
sed -i s/KAFKAID/${KAFKA_PORT}/g /etc/init/zookeeper-${ZK_PORT}.conf
# set up kafka service
cp ${REPOSITORY_ROOT}/vagrant/kafka.conf /etc/init/kafka-${KAFKA_PORT}.conf
sed -i s/KAFKAID/${KAFKA_PORT}/g /etc/init/kafka-${KAFKA_PORT}.conf
sed -i s/ZK_PORT/${ZK_PORT}/g /etc/init/kafka-${KAFKA_PORT}.conf
start zookeeper-${ZK_PORT}
done
# Wait for the last kafka node to finish booting
while ! nc -q 1 localhost 29095 </dev/null; do echo "Waiting"; sleep 1; done

View File

@ -0,0 +1,6 @@
start on started networking
stop on shutdown
env KAFKA_INSTALL_ROOT=/opt
exec /opt/run_toxiproxy.sh

Some files were not shown because too many files have changed in this diff Show More